Emission properties of body-centered cubic elemental metal photocathodes

A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

[1]  R. Smoluchowski Anisotropy of the Electronic Work Function of Metals , 1941 .

[2]  W. Schroeder,et al.  High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator. , 2008, Optics express.

[3]  T. Topuria,et al.  Nanosecond‐scale time‐resolved electron imaging during laser crystallization of GeTe , 2012 .

[4]  J. Fischer,et al.  Photoemission studies on metals using picosecond ultraviolet laser pulses , 1991 .

[5]  L. Mattheiss ELECTRONIC STRUCTURE OF NIOBIUM AND TANTALUM. , 1970 .

[6]  A. E. Campbell,et al.  Molybdenum work function determined by electron emission microscopy , 1971 .

[7]  C. D. Child,et al.  Discharge From Hot Cao , 1911 .

[8]  J. Colvin,et al.  Nanosecond time resolved electron diffraction studies of the α→β in pure Ti thin films using the dynamic transmission electron microscope (DTEM) , 2006 .

[9]  H. N. Chapman,et al.  Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.

[10]  A. Freeman,et al.  Local spin density total energy study of surface magnetism: V (100) , 1985 .

[11]  Mitra L Taheri,et al.  Imaging of Transient Structures Using Nanosecond in Situ TEM , 2008, Science.

[12]  O. Bostanjoglo,et al.  Impulse stimulated crystallization of Sb films investigated by time resolved TEM , 1981 .

[13]  C. Ruan,et al.  Electronically driven fragmentation of silver nanocrystals revealed by ultrafast electron crystallography. , 2010, Physical review letters.

[14]  T. Topuria,et al.  Irreversible reactions studied with nanosecond transmission electron microscopy movies: Laser crystallization of phase change materials , 2013 .

[15]  Jason R. Dwyer,et al.  Femtosecond electron diffraction studies of strongly driven structural phase transitions , 2004 .

[16]  R. Parker,et al.  Experimental study of the Fermi surface of vanadium , 1974 .

[17]  Ivan V. Tomov,et al.  Laser‐driven metal photocathodes for picosecond electron and x‐ray pulse generation , 1992 .

[18]  J. Sipe,et al.  Analytic model of electron pulse propagation in ultrafast electron diffraction experiments , 2006 .

[19]  Picosecond electron diffraction , 1982 .

[20]  F. E. Girouard,et al.  Thermionic Emission from a Niobium Single Crystal , 1974 .

[21]  W. King,et al.  Ultrafast electron microscopy in materials science, biology, and chemistry , 2005 .

[22]  I. Bazarov,et al.  Maximum achievable beam brightness from photoinjectors. , 2009, Physical review letters.

[23]  R. Miller,et al.  Electronic acceleration of atomic motions and disordering in bismuth , 2009, Nature.

[24]  Jerome B. Hastings,et al.  Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams , 2006 .

[25]  Jason R. Dwyer,et al.  An Atomic-Level View of Melting Using Femtosecond Electron Diffraction , 2003, Science.

[26]  M. Rhee Refined definition of the beam brightness , 1992 .

[27]  L. Mattheiss FERMI SURFACE IN TUNGSTEN , 1965 .

[28]  N. Browning,et al.  Prospects for electron imaging with ultrafast time resolution , 2007 .

[29]  M. Horn-von Hoegen,et al.  Ultra-fast electron diffraction at surfaces: from nanoscale heat transport to driven phase transitions. , 2013, Ultramicroscopy.

[30]  G. Mahan Theory of Photoemission in Simple Metals , 1970 .

[31]  J. H. Condon,et al.  Experimental Study of the Fermi Surfaces of Niobium and Tantalum , 1970 .

[32]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[33]  Germán Sciaini,et al.  Femtosecond electron diffraction: heralding the era of atomically resolved dynamics , 2011 .

[34]  W. Schroeder,et al.  Semianalytic model of electron pulse propagation: Magnetic lenses and rf pulse compression cavities , 2010 .

[35]  A. Overhauser,et al.  Magnetoresistance of Potassium , 1968 .

[36]  D. Eastman,et al.  PHOTOELECTRIC WORK FUNCTIONS OF TRANSITION, RARE-EARTH, AND NOBLE METALS. , 1970 .

[37]  Aleksandr V. Smirnov,et al.  Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography , 2003, Science.

[38]  P. Renucci,et al.  Probing carrier dynamics in nanostructures by picosecond cathodoluminescence , 2005, Nature.

[39]  A. Baldereschi,et al.  Deriving accurate work functions from thin-slab calculations , 1999 .

[40]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[41]  M. Ferrario,et al.  Nb-Pb Superconducting RF Gun , 2006 .

[42]  Elschner,et al.  Nanosecond electron microscopes , 2000, Ultramicroscopy.

[43]  O. Bostanjoglo,et al.  Tracing fast phase transitions by electron microscopy , 1980 .

[44]  S. Surma Correlation of Electron Work Function and Surface‐Atomic Structure of Some d Transition Metals , 2001 .

[45]  Songye Chen,et al.  Ultrafast electron crystallography: transient structures of molecules, surfaces, and phase transitions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  C. Viswanathan,et al.  CALCULATION OF THE PHOTOELECTRIC EMISSION FROM TUNGSTEN, TANTALUM, AND MOLYBDENUM. , 1971 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  F. Himpsel Angle-resolved measurements of the photoemission of electrons in the study of solids , 1983 .

[50]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[51]  Jianming Cao,et al.  Femtosecond electron diffraction for direct measurement of ultrafast atomic motions , 2003 .

[52]  W. H. Benner,et al.  Femtosecond diffractive imaging with a soft-X-ray free-electron laser , 2006, physics/0610044.

[53]  T. Loucks FERMI SURFACES OF Cr, Mo, AND W BY THE AUGMENTED-PLANE-WAVE METHOD , 1965 .

[54]  Peter M. Weber,et al.  Ultrafast Diffraction Imaging of the Electrocyclic Ring-Opening Reaction of 1,3-Cyclohexadiene , 2001 .

[55]  C. X. Tang,et al.  Experimental investigation of thermal emittance components of copper photocathode , 2012 .

[56]  M. Virgo,et al.  Effects of pulse-length and emitter area on virtual cathode formation in electron guns , 2002 .

[57]  J. K. Chen,et al.  A semiclassical two-temperature model for ultrafast laser heating , 2006 .

[58]  G. Hoffmann,et al.  Time-Resolved TEM of Transient Effects in Pulse Annealing of Ge and Ge–Te Films , 1982 .

[59]  University of Cambridge,et al.  THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999 .

[60]  F. Hartemann,et al.  Single-shot dynamic transmission electron microscopy , 2006 .

[61]  F. Ham Energy Bands of Alkali Metals. II. Fermi Surface , 1962 .

[62]  V. Lobastov,et al.  Four-dimensional ultrafast electron microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[64]  R. E. Thomas,et al.  Diffusion measurements in thin films utilizing work function changes: Cr into Au , 1972 .

[65]  D. Papaconstantopoulos,et al.  Handbook of the Band Structure of Elemental Solids , 1986 .

[66]  A. Rose,et al.  Television Pickup Tubes and the Problem of Vision , 1948 .

[67]  O. Bostanjoglo,et al.  PULSED PHOTOELECTRON MICROSCOPE FOR IMAGING LASER-INDUCED NANOSECOND PROCESSES , 1997 .

[68]  K. Jensen,et al.  Emittance of a Field Emission Electron Source , 2010 .

[69]  W. T. Roberts,et al.  Rolling textures in f.c.c. and b.c.c. metals , 1964 .

[70]  Fu,et al.  Surface ferromagnetism of Cr(001). , 1986, Physical review. B, Condensed matter.

[71]  John Schmerge,et al.  The Quantum Efficiency and Thermal Emittance of Metal Photocathodes , 2009 .

[72]  Zhirong Huang,et al.  A review of x-ray free-electron laser theory. , 2007 .

[73]  M. Lagally,et al.  Electronically driven structure changes of Si captured by femtosecond electron diffraction. , 2008, Physical review letters.

[74]  Tuo Li,et al.  Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes , 2012 .

[75]  Martin Reiser,et al.  Theory and Design of Charged Particle Beams , 1994 .

[76]  D. G. Laurent,et al.  Energy bands, Compton profile, and optical conductivity of vanadium , 1978 .

[77]  N. Browning,et al.  Time-resolved annular dark field imaging of catalyst nanoparticles. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[78]  A. Nicholls,et al.  Intrinsic electron beam emittance from metal photocathodes: the effect of the electron effective mass. , 2013, Physical review letters.

[79]  Ahmed H. Zewail,et al.  Clocking transient chemical changes by ultrafast electron diffraction , 1997, Nature.

[80]  Vladimir A. Lobastov,et al.  Ultrafast electron diffraction (UED) a new development for the 4D determination of transient molecular structures , 2003 .

[81]  R. Ganter,et al.  Intrinsic emittance reduction of an electron beam from metal photocathodes. , 2010, Physical review letters.

[82]  Papaconstantopoulos,et al.  Total energy and band structure of the 3d, 4d, and 5d metals. , 1992, Physical review. B, Condensed matter.

[83]  Sven Reiche,et al.  A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. , 2008, Physical review letters.

[84]  Howard A. Padmore,et al.  Cathode R&D for future light sources , 2010 .

[85]  Irving Langmuir,et al.  The Effect of Space Charge and Initial Velocities on the Potential Distribution and Thermionic Current between Parallel Plane Electrodes , 1923 .

[86]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[87]  Kevin Wang,et al.  Decoupling of structural and electronic phase transitions in VO2. , 2012, Physical review letters.

[88]  D. Tabor Hardness of Metals , 1937, Nature.

[89]  Sébastien Boutet,et al.  Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature , 2013, Science.

[90]  F. Hartemann,et al.  Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. , 2006, Ultramicroscopy.