Measuring what Matters: A Hybrid Approach to Dynamic Programming with Treewidth
暂无分享,去创建一个
Robert Ganian | O-joung Kwon | Eduard Eiben | Thekla Hamm | O-joung Kwon | E. Eiben | Thekla Hamm | R. Ganian
[1] Hans L. Bodlaender,et al. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.
[2] Robert Ganian,et al. Going Beyond Primal Treewidth for (M)ILP , 2017, AAAI.
[3] Stefan Kratsch,et al. Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.
[4] Christophe Paul,et al. An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion , 2015, Algorithmica.
[5] Petr A. Golovach,et al. Intractability of Clique-Width Parameterizations , 2010, SIAM J. Comput..
[6] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[7] Paul D. Seymour,et al. Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.
[8] Robert Ganian,et al. Solving Problems on Graphs of High Rank-Width , 2015, Algorithmica.
[9] Michal Pilipczuk,et al. Parameterized Algorithms , 2015, Springer International Publishing.
[10] Stefan Kratsch,et al. Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..
[11] Vít Jelínek. The rank-width of the square grid , 2010, Discret. Appl. Math..
[12] Michal Pilipczuk,et al. Preprocessing subgraph and minor problems: When does a small vertex cover help? , 2012, J. Comput. Syst. Sci..
[13] Petr A. Golovach,et al. Clique-width: on the price of generality , 2009, SODA.
[14] Marcin Pilipczuk,et al. Finding Hamiltonian Cycle in Graphs of Bounded Treewidth , 2018, SEA.
[15] Dimitrios M. Thilikos,et al. (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[16] Nobuji Saito,et al. NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .
[17] Bruno Courcelle,et al. Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.
[18] Jörg Flum,et al. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .
[19] Hans L. Bodlaender,et al. Vertex Cover Kernelization Revisited , 2010, Theory of Computing Systems.
[20] Sang-il Oum,et al. Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.
[21] Jan Arne Telle,et al. A unified polynomial-time algorithm for Feedback Vertex Set on graphs of bounded mim-width , 2018, STACS.
[22] Bruno Courcelle,et al. Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.
[23] Robert Ganian,et al. Backdoor Treewidth for SAT , 2017, SAT.
[24] Denis Lapoire,et al. Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.
[25] Dániel Marx,et al. Slightly superexponential parameterized problems , 2011, SODA '11.
[26] Robert Ganian,et al. Meta-kernelization with structural parameters , 2013, J. Comput. Syst. Sci..
[27] Jan Arne Telle,et al. Between Treewidth and Clique-Width , 2014, Algorithmica.
[28] DÁNIEL MARX,et al. Immersions in Highly Edge Connected Graphs , 2013, SIAM J. Discret. Math..
[29] M. Vatshelle. New Width Parameters of Graphs , 2012 .
[30] Udi Rotics,et al. Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..
[31] Georg Gottlob,et al. Width Parameters Beyond Tree-width and their Applications , 2008, Comput. J..
[32] Robert Ganian,et al. A single-exponential fixed-parameter algorithm for Distance-Hereditary Vertex Deletion , 2016, MFCS.
[33] Petr Hlinený,et al. Finding Branch-Decompositions and Rank-Decompositions , 2007, SIAM J. Comput..
[34] Robert Ganian,et al. Combining Treewidth and Backdoors for CSP , 2016, STACS.
[35] Leizhen Cai,et al. Parameterized Complexity of Vertex Colouring , 2003, Discret. Appl. Math..
[36] Paul D. Seymour,et al. Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.
[37] Eun Jung Kim,et al. A Polynomial Kernel for Distance-Hereditary Vertex Deletion , 2016, Algorithmica.
[38] Jan Arne Telle,et al. Maximum Matching Width: New Characterizations and a Fast Algorithm for Dominating Set , 2015, IPEC.
[39] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[40] Bruno Courcelle,et al. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.
[41] Robert Ganian,et al. On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width , 2010, Discret. Appl. Math..
[42] Michael R. Fellows,et al. Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.
[43] Klaus Jansen,et al. Generalized Coloring for Tree-like Graphs , 1992, WG.
[44] Ton Kloks,et al. Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.
[45] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs IV: Definability Properties of Equational Graphs , 1990, Ann. Pure Appl. Log..
[46] Jakub Gajarský,et al. Kernelization Using Structural Parameters on Sparse Graph Classes , 2013, ESA.
[47] Robert Ganian,et al. A unified approach to polynomial algorithms on graphs of bounded (bi-)rank-width , 2013, Eur. J. Comb..
[48] Bruno Courcelle,et al. Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..
[49] Egon Wanke,et al. Deciding Clique-Width for Graphs of Bounded Tree-Width , 2001, J. Graph Algorithms Appl..
[50] Vít Jelínek. The Rank-Width of the Square Grid , 2008, WG.
[51] Michael R. Fellows,et al. Fundamentals of Parameterized Complexity , 2013 .
[52] Robert Ganian,et al. Meta-kernelization using well-structured modulators , 2018, Discret. Appl. Math..
[53] Petr A. Golovach,et al. Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width , 2014, SIAM J. Comput..
[54] Stefan Kratsch,et al. Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2018, J. ACM.
[55] Paul D. Seymour,et al. Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.