Chloroplast phylogenomic analysis provides insights into the evolution of the largest eukaryotic genome holder, Paris japonica (Melanthiaceae)

[1]  Wen-Bin Yu,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2018, Genome Biology.

[2]  Fábio de Oliveira Pedrosa,et al.  The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae , 2018, Planta.

[3]  A. Leitch,et al.  Is There an Upper Limit to Genome Size? , 2017, Trends in plant science.

[4]  H. Schneider,et al.  Genomic gigantism in the whisk-fern family (Psilotaceae): Tmesipteris obliqua challenges record holder Paris japonica. , 2017 .

[5]  B. G. Briggs,et al.  Phylogenomics and historical biogeography of the monocot order Liliales: out of Australia and through Antarctica , 2016, Cladistics : the international journal of the Willi Hennig Society.

[6]  Xiaojuan Li,et al.  Analysis of Complete Chloroplast Genome Sequences Improves Phylogenetic Resolution in Paris (Melanthiaceae) , 2016, Front. Plant Sci..

[7]  M. Chase,et al.  Molecular phylogenetic relationships of Melanthiaceae (Liliales) based on plastid DNA sequences , 2016 .

[8]  L. Clark,et al.  Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. , 2016, Molecular phylogenetics and evolution.

[9]  C. dePamphilis,et al.  Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants , 2016, Proceedings of the National Academy of Sciences.

[10]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[11]  L. Peruzzi,et al.  Testing the large genome constraint hypothesis: plant traits, habitat and climate seasonality in Liliaceae. , 2016, The New phytologist.

[12]  Jeffrey P. Mower,et al.  Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. , 2016, The New phytologist.

[13]  A. Leitch,et al.  Genome size diversity in angiosperms and its influence on gene space. , 2015, Current opinion in genetics & development.

[14]  Pamela S Soltis,et al.  Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. , 2015, American journal of botany.

[15]  Justin Zobel,et al.  Bandage: interactive visualization of de novo genome assemblies , 2015, bioRxiv.

[16]  Joo-Hwan Kim,et al.  A trnI_CAU Triplication Event in the Complete Chloroplast Genome of Paris verticillata M.Bieb. (Melanthiaceae, Liliales) , 2014, Genome biology and evolution.

[17]  Hongwen Huang,et al.  Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. , 2014, The New phytologist.

[18]  C. Witt,et al.  Metabolic ‘engines’ of flight drive genome size reduction in birds , 2014, Proceedings of the Royal Society B: Biological Sciences.

[19]  M. Fay,et al.  A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. , 2014, The New phytologist.

[20]  M. Chase,et al.  Familial relationships of the monocot order Liliales based on a molecular phylogenetic analysis using four plastid loci: matK, rbcL, atpB and atpF‐H , 2013 .

[21]  L. J. Kelly,et al.  Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). , 2013, Genome.

[22]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[23]  N. Fedoroff Transposable Elements, Epigenetics, and Genome Evolution , 2012 .

[24]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[25]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[26]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[27]  Mukesh Jain,et al.  NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data , 2012, PloS one.

[28]  Mark Fishbein,et al.  Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. , 2012, American journal of botany.

[29]  M. Logacheva,et al.  Sequencing and Analysis of Plastid Genome in Mycoheterotrophic Orchid Neottia nidus-avis , 2011, Genome biology and evolution.

[30]  Zhekun Zhou,et al.  Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province , 2011 .

[31]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[32]  Ilia J. Leitch,et al.  The largest eukaryotic genome of them all , 2010 .

[33]  M. Chase,et al.  Genome Size Dynamics and Evolution in Monocots , 2010 .

[34]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[35]  Richard Cronn,et al.  Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes , 2009, BMC Biology.

[36]  S. Farmer,et al.  Phylogenetic Analyses of Trilliaceae based on Morphological and Molecular Data , 2009 .

[37]  C. Knight,et al.  Genome size scaling through phenotype space. , 2008, Annals of botany.

[38]  S. Chaw,et al.  Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots , 2008, BMC Evolutionary Biology.

[39]  Pamela S Soltis,et al.  Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms , 2007, Proceedings of the National Academy of Sciences.

[40]  James Leebens-Mack,et al.  Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.

[41]  Ralph Bock,et al.  OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes , 2007, Current Genetics.

[42]  Anchun Li,et al.  Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma , 2007 .

[43]  Linda A. Raubeson,et al.  Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus , 2007, BMC Genomics.

[44]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[45]  Tiaojiang Xiao,et al.  Phylogeny and classification of Paris (Melanthiaceae) inferred from DNA sequence data. , 2006, Annals of botany.

[46]  I. Leitch,et al.  First nuclear DNA amounts in more than 300 angiosperms. , 2005, Annals of botany.

[47]  Peter Schattner,et al.  The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..

[48]  S. Carroll,et al.  More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. , 2005, Molecular biology and evolution.

[49]  C. Lottaz,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[50]  D. Nickrent,et al.  A molecular phylogeny of the mistletoe genus Viscum , 2004 .

[51]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[52]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[53]  C. Schär,et al.  Interannual Covariance between Japan Summer Precipitation and Western North Pacific SST , 2003 .

[54]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[55]  J. Wendel,et al.  Feast and famine in plant genomes , 2002, Genetica.

[56]  W. M. Whitten,et al.  Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: evidence from ITS and trnL-F sequence data. , 2001, American journal of botany.

[57]  M. Morgan Transposable element number in mixed mating populations. , 2001, Genetical research.

[58]  Lars S. Jermiin,et al.  Many Parallel Losses of infA from Chloroplast DNA during Angiosperm Evolution with Multiple Independent Transfers to the Nucleus , 2001, Plant Cell.

[59]  S. Kawano,et al.  Molecular systematics of Trilliaceae II. Phylogenetic analyses of Trillium and its allies using sequences of rbcL and matK genes of cpDNA and internal transcribed spacers of 18S–26S nrDNA , 1999 .

[60]  R. Gregory,et al.  The modulation of DNA content: proximate causes and ultimate consequences. , 1999, Genome research.

[61]  M. Chase,et al.  PHYLOGENETIC ANALYSIS OF DNA C-VALUES PROVIDES EVIDENCE FOR A SMALL ANCESTRAL GENOME SIZE IN FLOWERING PLANTS , 1998 .

[62]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[63]  R. Terauchi,et al.  Molecular systematics of the Trilliaceae sensu lato as inferred from rbcL sequence data. , 1995, Molecular phylogenetics and evolution.

[64]  J. Palmer,et al.  Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[65]  D. Willey,et al.  An open reading frame encoding a putative haem-binding polypeptide is contranscribed with the pea chloroplast gene for apocytochrome f , 1990, Plant Molecular Biology.

[66]  H. Li The phylogeny of the genus paris , 1984 .

[67]  A. Takhtajan A revision of Daiswa (Trilliaceae) , 1983 .

[68]  H. Hara,et al.  An enumeration of the flowering plants of Nepal , 1980 .

[69]  T. Haga Chromosome Complement of Kinugasa japonica with Special Reference to Its Origin and Behavior , 1937 .

[70]  館脇 操,et al.  ON THE NEW GENUS KINUGASA , 1935 .

[71]  Jerrold I. Davis,et al.  Resolving ancient radiations: can complete plastid gene sets elucidate deep relationships among the tropical gingers (Zingiberales)? , 2014, Annals of botany.

[72]  A. Leitch,et al.  Genome Size Diversity and Evolution in Land Plants , 2013 .

[73]  N. Fedoroff T r ansposable Elemen ts, Epigenetics, and Genome , 2012 .

[74]  H. Senshu,et al.  History of Supercontinents and Its Relation to the Origin of japanese Islands , 2011 .

[75]  J. Bennetzen,et al.  Mechanisms of recent genome size variation in flowering plants. , 2005, Annals of botany.

[76]  D. Petrov,et al.  The large genome constraint hypothesis: evolution, ecology and phenotype. , 2005, Annals of botany.

[77]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[78]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[79]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .