Video recommendation over multiple information sources

Video recommendation is an important tool to help people access interesting videos. In this paper, we propose a universal scheme to integrate rich information for personalized video recommendation. Our approach regards video recommendation as a ranking task. First, it generates multiple ranking lists by exploring different information sources. In particular, one novel source user’s relationship strength is inferred through the online social network and applied to recommend videos. Second, based on multiple ranking lists, a multi-task rank aggregation approach is proposed to integrate these ranking lists to generate a final result for video recommendation. It is shown that our scheme is flexible that can easily incorporate other methods by adding their generated ranking lists into our multi-task rank aggregation approach. We conduct experiments on a large dataset with 76 users and more than 11,000 videos. The experimental results demonstrate the feasibility and effectiveness of our approach.

[1]  Zhoujun Li,et al.  Integrating rich information for video recommendation with multi-task rank aggregation , 2011, ACM Multimedia.

[2]  Jun Yang,et al.  A framework for classifier adaptation and its applications in concept detection , 2008, MIR '08.

[3]  Hua Li,et al.  Demographic prediction based on user's browsing behavior , 2007, WWW '07.

[4]  Tao Mei,et al.  Joint multi-label multi-instance learning for image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Tat-Seng Chua,et al.  Utilizing related samples to learn complex queries in interactive concept-based video search , 2010, CIVR '10.

[6]  Tao Mei,et al.  Contextual Video Recommendation by Multimodal Relevance and User Feedback , 2011, TOIS.

[7]  Huan Liu,et al.  Text Analytics in Social Media , 2012, Mining Text Data.

[8]  Xuelong Li,et al.  Modality Mixture Projections for Semantic Video Event Detection , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Meng Wang,et al.  Dynamic captioning: video accessibility enhancement for hearing impairment , 2010, ACM Multimedia.

[10]  Kiyoharu Aizawa,et al.  A degree-of-edit ranking for consumer generated video retrieval , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[11]  Rich Caruana,et al.  Multitask Learning , 1997, Machine-mediated learning.

[12]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[13]  Shankar Kumar,et al.  Video suggestion and discovery for youtube: taking random walks through the view graph , 2008, WWW.

[14]  Nihan Kesim Cicekli,et al.  A Hybrid Video Recommendation System Using a Graph-Based Algorithm , 2011, IEA/AIE.

[15]  Martin Halvey,et al.  Search trails using user feedback to improve video search , 2008, ACM Multimedia.

[16]  Meng Wang,et al.  Active learning in multimedia annotation and retrieval: A survey , 2011, TIST.

[17]  Meng Wang,et al.  Beyond Distance Measurement: Constructing Neighborhood Similarity for Video Annotation , 2009, IEEE Transactions on Multimedia.

[18]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[19]  Tao Qin,et al.  Supervised rank aggregation , 2007, WWW '07.

[20]  Massimiliano Pontil,et al.  Regularized multi--task learning , 2004, KDD.

[21]  Jianping Fan,et al.  Personalized News Video Recommendation , 2009, MMM.

[22]  Charu C. Aggarwal,et al.  Mining Text Data , 2012 .

[23]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[24]  Xian-Sheng Hua,et al.  Content-aware Ranking for visual search , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Michael R. Lyu,et al.  Learning to recommend with social trust ensemble , 2009, SIGIR.

[26]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[27]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[28]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[29]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[30]  Robin D. Burke,et al.  Hybrid Web Recommender Systems , 2007, The Adaptive Web.

[31]  Xian-Sheng Hua,et al.  Ranking Model Adaptation for Domain-Specific Search , 2012, IEEE Trans. Knowl. Data Eng..

[32]  Jebrin Al-Sharawneh,et al.  Credibility-aware Web-based Social Network Recommender: Follow the Leader , 2010 .

[33]  Anton Nijholt,et al.  Prediction Strategies in a TV Recommender System – Method and Experiments , 2003, ICWI.

[34]  Tom Heskes,et al.  Task Clustering and Gating for Bayesian Multitask Learning , 2003, J. Mach. Learn. Res..

[35]  Hwanjo Yu,et al.  SVM selective sampling for ranking with application to data retrieval , 2005, KDD '05.

[36]  Nan Sun,et al.  Exploiting internal and external semantics for the clustering of short texts using world knowledge , 2009, CIKM.

[37]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[38]  Huan Liu,et al.  Enhancing accessibility of microblogging messages using semantic knowledge , 2011, CIKM '11.

[39]  Meng Wang,et al.  Visual query suggestion , 2009, ACM Multimedia.

[40]  Meng Wang,et al.  Unified Video Annotation via Multigraph Learning , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[41]  Zhoujun Li,et al.  An online video recommendation framework using rich information , 2011, ICIMCS '11.

[42]  Tao Mei,et al.  VideoReach: an online video recommendation system , 2007, SIGIR.

[43]  Paul Resnick,et al.  Reputation systems , 2000, CACM.

[44]  Tie-Yan Liu,et al.  Adapting ranking SVM to document retrieval , 2006, SIGIR.

[45]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[46]  Jonghun Park,et al.  Online Video Recommendation through Tag-Cloud Aggregation , 2011, IEEE MultiMedia.

[47]  Marcel Worring,et al.  Internet Multimedia Search and Mining , 2013 .

[48]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.