Thermoplasmonic and Photothermal Metamaterials for Solar Energy Applications

[1]  Jianwei Song,et al.  3D‐Printed, All‐in‐One Evaporator for High‐Efficiency Solar Steam Generation under 1 Sun Illumination , 2017, Advanced materials.

[2]  G. Kang,et al.  Transparent dielectric nanostructures for efficient light management in optoelectronic applications , 2015 .

[3]  A. Kildishev,et al.  Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber , 2014, Advanced materials.

[4]  Willie J. Padilla,et al.  Broadband Optical Antireflection Enhancement by Integrating Antireflective Nanoislands with Silicon Nanoconical‐Frustum Arrays , 2011, Advanced materials.

[5]  C. Mungan Radiation thermodynamics with applications to lasing and fluorescent cooling , 2005 .

[6]  Resonant plasmon nanofocusing by closed tapered gaps. , 2010, Nano letters.

[7]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[8]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[9]  W. Park,et al.  Plasmon enhancement of luminescence upconversion. , 2015, Chemical Society reviews.

[10]  Bin Zhu,et al.  Three-dimensional artificial transpiration for efficient solar waste-water treatment , 2018 .

[11]  Bin Zhu,et al.  Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation , 2016, Science Advances.

[12]  J. G. Fleming,et al.  Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation , 2003 .

[13]  M. Vermelho,et al.  Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation. , 2010, The Journal of chemical physics.

[14]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[15]  T. Krauss,et al.  Silicon photonic crystal thermal emitter at near-infrared wavelengths , 2015, Scientific Reports.

[16]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[17]  Thomas Søndergaard,et al.  Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves , 2012, Nature Communications.

[18]  D. Gramotnev,et al.  Heating effects in nanofocusing metal wedges , 2011 .

[19]  Zongfu Yu,et al.  Extremely Cost‐Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper , 2017, Global challenges.

[20]  Y. Nishijima,et al.  Design concept of a hybrid photo-voltaic/thermal conversion cell for mid-infrared light energy harvester , 2017 .

[21]  Joseph B. Herzog,et al.  Thermoplasmonics: quantifying plasmonic heating in single nanowires. , 2014, Nano letters.

[22]  Qihua Xiong,et al.  Laser cooling of a semiconductor by 40 kelvin , 2013, Nature.

[23]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[24]  Gennady Shvets,et al.  Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems , 2011 .

[25]  Mansoor Sheik-Bahae,et al.  Laser cooling in solids: advances and prospects , 2016, Reports on progress in physics. Physical Society.

[26]  Q. Xiong,et al.  Bright Photon Upconversion on Composite Organic Lanthanide Molecules through Localized Thermal Radiation. , 2017, The journal of physical chemistry letters.

[27]  Michal Lipson,et al.  High-performance near-field thermophotovoltaics for waste heat recovery , 2017 .

[28]  Mansoor Sheik-Bahae,et al.  Laser cooling of solids , 2009 .

[29]  J. Dowling,et al.  Improving solar cell efficiency using photonic band-gap materials , 2007 .

[30]  Nazir P. Kherani,et al.  Thermophotovoltaics: Fundamentals, challenges and prospects , 2015 .

[31]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[32]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[33]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[34]  Younes Messaddeq,et al.  Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm , 2000 .

[35]  Leopoldo L. Martin,et al.  Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission , 2015 .

[36]  Shanhui Fan,et al.  Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody , 2015, Proceedings of the National Academy of Sciences.

[37]  Takeshi Fujita,et al.  Multifunctional Porous Graphene for High‐Efficiency Steam Generation by Heat Localization , 2015, Advanced materials.

[38]  Yurong He,et al.  A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement , 2017 .

[39]  C. Rotschild,et al.  Thermally enhanced photoluminescence for heat harvesting in photovoltaics , 2016, Nature Communications.

[40]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[41]  Sergey I. Bozhevolnyi,et al.  Nanofocusing of electromagnetic radiation , 2013, Nature Photonics.

[42]  Ivan Celanovic,et al.  Two-dimensional tungsten photonic crystals as selective thermal emitters , 2008 .

[43]  P. Würfel,et al.  Light with nonzero chemical potential , 2005 .

[44]  Alexander R. Albrecht,et al.  Solid-state optical refrigeration to sub-100 Kelvin regime , 2016, Scientific Reports.

[45]  P. Basset,et al.  Study of black silicon obtained by cryogenic plasma etching: approach to achieve the hot spot of a thermoelectric energy harvester , 2012 .

[46]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[47]  J. Joseph,et al.  Design and fabrication of woodpile photonic structures through phase SLM-based interference lithography for omnidirectional optical filters. , 2017, Optics letters.

[48]  Jianfeng Huang,et al.  High‐Performance Large‐Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles , 2017 .

[49]  Zhifeng Ren,et al.  Metallic nanostructures for light trapping in energy-harvesting devices , 2014, Light: Science & Applications.

[50]  E. A. Gouveia,et al.  Thermally induced threefold upconversion emission enhancement in nonresonant excited Er3+/Yb3+-codoped chalcogenide glass , 1999 .

[51]  Gang Chen,et al.  Steam generation under one sun enabled by a floating structure with thermal concentration , 2016, Nature Energy.

[52]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[53]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[54]  Gang Chen,et al.  Thermal Emission Control with One-Dimensional Metallodielectric Photonic Crystals , 2004 .

[55]  S. Bozhevolnyi,et al.  Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves , 2014, Scientific Reports.

[56]  C. Rotschild,et al.  Efficient 10-Fold Upconversion through Steady-State Non-Thermal-Equilibrium Excitation , 2016, 1808.10504.

[57]  Albert Polman,et al.  Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. , 2013, Nano letters.

[58]  Younes Messaddeq,et al.  Thermally enhanced cooperative energy-transfer frequency upconversion in terbium and ytterbium doped tellurite glass , 2003 .

[59]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[60]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[61]  David R. Smith,et al.  Large‐Area Metasurface Perfect Absorbers from Visible to Near‐Infrared , 2015, Advanced materials.

[62]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[63]  R. E. Nelson A brief history of thermophotovoltaic development , 2003 .

[64]  Ronggui Yang,et al.  Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling , 2017, Science.

[65]  Kelsey A. W. Horowitz,et al.  Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions , 2017, Nature Energy.

[66]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[67]  Moyuan Cao,et al.  Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface. , 2015, ACS applied materials & interfaces.

[68]  Peter Nordlander,et al.  Nanoparticles heat through light localization. , 2014, Nano letters.

[69]  Shining Zhu,et al.  Mushrooms as Efficient Solar Steam‐Generation Devices , 2017, Advanced materials.

[70]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[71]  Long Wen,et al.  Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application , 2015 .

[72]  P. Pringsheim Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung , 1929 .

[73]  Pingqi Gao,et al.  Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays. , 2017, Optics express.

[74]  Wounjhang Park,et al.  Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation , 2015, Nature Communications.

[75]  Min Yan,et al.  Metal–insulator–metal light absorber: a continuous structure , 2013 .

[76]  Peter Nordlander,et al.  Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles , 2013, Proceedings of the National Academy of Sciences.

[77]  M. Sheik-Bahae,et al.  Can laser light cool semiconductors? , 2004, Physical review letters.

[78]  Nigel Fox,et al.  The partial space qualification of a vertically aligned carbon nanotube coating on aluminium substrates for EO applications. , 2014, Optics express.

[79]  Xiaofei Ma,et al.  Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation , 2017 .

[80]  R. Naik,et al.  Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. , 2017, ACS applied materials & interfaces.

[81]  C. Summers,et al.  Plasmon enhancement mechanism for the upconversion processes in NaYF4:Yb(3+),Er(3+) nanoparticles: Maxwell versus Förster. , 2014, ACS nano.

[82]  David M. Bierman,et al.  Metallic Photonic Crystal Absorber‐Emitter for Efficient Spectral Control in High‐Temperature Solar Thermophotovoltaics , 2014 .

[83]  Di Zhang,et al.  Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. , 2014, Small.

[84]  Nicholas P. Sergeant,et al.  Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification , 2013, Nature Communications.

[85]  Tao Deng,et al.  A Bioinspired, Reusable, Paper‐Based System for High‐Performance Large‐Scale Evaporation , 2015, Advanced materials.

[86]  Pratim Biswas,et al.  Bilayered Biofoam for Highly Efficient Solar Steam Generation , 2016, Advanced materials.

[87]  Peng Wang,et al.  Hydrophobic Light‐to‐Heat Conversion Membranes with Self‐Healing Ability for Interfacial Solar Heating , 2015, Advanced materials.

[88]  Aaswath Raman,et al.  Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. , 2013, Nano letters.

[89]  P. Zhan,et al.  Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber , 2017, Scientific Reports.

[90]  Wenshan Cai,et al.  3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination , 2016, Nature Photonics.

[91]  Peter F. Barker,et al.  Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals , 2017 .

[92]  James Loomis,et al.  Solar steam generation by heat localization , 2014, Nature Communications.

[93]  Saulius Juodkazis,et al.  Photo-thermoelectric energy converter with black-Si absorber , 2014, 2014 Conference on Optoelectronic and Microelectronic Materials & Devices.

[94]  Shanhui Fan,et al.  Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery , 2015 .

[95]  Srinivas Sista,et al.  Tandem polymer photovoltaic cells—current status, challenges and future outlook , 2011 .

[96]  H. Ghasemi,et al.  Volumetric solar heating of nanofluids for direct vapor generation , 2015 .

[97]  J. Joseph,et al.  Plasmonic metamaterial based unified broadband absorber/near infrared emitter for thermophotovoltaic system based on hexagonally packed tungsten doughnuts , 2017 .

[98]  W. Ruppel,et al.  Upper limit of thermophotovoltaic solar-energy conversion , 1980, IEEE Transactions on Electron Devices.

[99]  G. Ho,et al.  Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination , 2016 .

[100]  T. R. Gosnell,et al.  Observation of laser-induced fluorescent cooling of a solid , 1995, Nature.

[101]  Jeffrey G. Cederberg,et al.  Development of high quantum efficiency GaAs/GaInP double heterostructures for laser cooling , 2013 .

[102]  Shanhui Fan,et al.  Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. , 2009, Optics express.

[103]  Piero Pianetta,et al.  Photon-enhanced thermionic emission for solar concentrator systems. , 2010, Nature materials.

[104]  P. Würfel,et al.  Theoretical limits of thermophotovoltaic solar energy conversion , 2003 .

[105]  M. Soljačić,et al.  Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics , 2013, Proceedings of the National Academy of Sciences.