A single copy of SecYEG is sufficient for preprotein translocation

The heterotrimeric SecYEG complex comprises a protein‐conducting channel in the bacterial cytoplasmic membrane. SecYEG functions together with the motor protein SecA in preprotein translocation. Here, we have addressed the functional oligomeric state of SecYEG when actively engaged in preprotein translocation. We reconstituted functional SecYEG complexes labelled with fluorescent markers into giant unilamellar vesicles at a natively low density. Förster's resonance energy transfer and fluorescence (cross‐) correlation spectroscopy with single‐molecule sensitivity allowed for independent observations of the SecYEG and preprotein dynamics, as well as complex formation. In the presence of ATP and SecA up to 80% of the SecYEG complexes were loaded with a preprotein translocation intermediate. Neither the interaction with SecA nor preprotein translocation resulted in the formation of SecYEG oligomers, whereas such oligomers can be detected when enforced by crosslinking. These data imply that the SecYEG monomer is sufficient to form a functional translocon in the lipid membrane.

[1]  T. Rapoport,et al.  Protein Translocation Is Mediated by Oligomers of the SecY Complex with One SecY Copy Forming the Channel , 2007, Cell.

[2]  O. Krichevsky,et al.  Fluorescence correlation spectroscopy: the technique and its applications , 2002 .

[3]  G. van den Bogaart,et al.  Probing receptor-translocator interactions in the oligopeptide ABC transporter by fluorescence correlation spectroscopy. , 2008, Biophysical journal.

[4]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[5]  G. Georgiou,et al.  In vivo degradation of secreted fusion proteins by the Escherichia coli outer membrane protease OmpT , 1990, Journal of bacteriology.

[6]  A. Driessen,et al.  The Active Protein-conducting Channel of Escherichia coli Contains an Apolar Patch* , 2007, Journal of Biological Chemistry.

[7]  A. Driessen,et al.  Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring SecE. , 1999, Biochemistry.

[8]  P. Schwille,et al.  Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. , 1997, Biophysical journal.

[9]  Eric R Geertsma,et al.  Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. , 2005, Biophysical journal.

[10]  A. Driessen,et al.  SecY–SecY and SecY–SecG contacts revealed by site‐specific crosslinking , 2002, FEBS letters.

[11]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[12]  Y. Sugita,et al.  Conformational transition of Sec machinery inferred from bacterial SecYE structures , 2008, Nature.

[13]  J. Frank,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2006, Nature.

[14]  S. Sligar,et al.  Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA , 2007, The EMBO journal.

[15]  M. van der Laan,et al.  Reconstitution of purified bacterial preprotein translocase in liposomes. , 2003, Methods in enzymology.

[16]  Koreaki Ito,et al.  Different modes of SecY–SecA interactions revealed by site-directed in vivo photo-cross-linking , 2006, Proceedings of the National Academy of Sciences.

[17]  T. Rapoport,et al.  The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. , 1999, Journal of molecular biology.

[18]  Petra Schwille,et al.  Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. , 2010, Methods in molecular biology.

[19]  A. Holt,et al.  Lateral diffusion of membrane proteins. , 2009, Journal of the American Chemical Society.

[20]  A. Driessen,et al.  Kinetic Analysis of the Translocation of Fluorescent Precursor Proteins into Escherichia coli Membrane Vesicles* , 2002, The Journal of Biological Chemistry.

[21]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[22]  S. Mizushima,et al.  SecE‐dependent overproduction of SecY in Escherichia coli , 1990, FEBS letters.

[23]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Radford,et al.  The Oligomeric State and Arrangement of the Active Bacterial Translocon* , 2010, The Journal of Biological Chemistry.

[25]  I. Collinson,et al.  The action of cardiolipin on the bacterial translocon , 2010, Proceedings of the National Academy of Sciences.

[26]  W. Konings,et al.  A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  B. Feringa,et al.  Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules , 2011, Proceedings of the National Academy of Sciences.

[28]  John C. Wyngaard,et al.  Structure of the PBL , 1988 .

[29]  C. Dekker,et al.  Crystal structure of SecB from Escherichia coli. , 2003, Journal of structural biology.

[30]  A. Driessen,et al.  Non-bilayer Lipids Stimulate the Activity of the Reconstituted Bacterial Protein Translocase* , 2000, The Journal of Biological Chemistry.

[31]  Joachim Koch,et al.  Identification of two interaction sites in SecY that are important for the functional interaction with SecA. , 2006, Journal of molecular biology.

[32]  R. Dowben,et al.  Formation and properties of thin‐walled phospholipid vesicles , 1969, Journal of cellular physiology.

[33]  T. Rapoport,et al.  Structure of a complex of the ATPase SecA and the protein-translocation channel , 2008, Nature.

[34]  P. Tai,et al.  The structure of SecB/OmpA as visualized by electron microscopy: The mature region of the precursor protein binds asymmetrically to SecB. , 2010, Biochemical and biophysical research communications.

[35]  J. Joly,et al.  Translocation can drive the unfolding of a preprotein domain. , 1993, The EMBO journal.

[36]  G. van den Bogaart,et al.  Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. , 2007, Biophysical journal.

[37]  Pasquale Stano,et al.  Giant Vesicles: Preparations and Applications , 2010, Chembiochem : a European journal of chemical biology.

[38]  T. Rapoport,et al.  Three-dimensional structure of the bacterial protein-translocation complex SecYEG , 2002, Nature.

[39]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[40]  E. Pérez-Payá,et al.  Membrane promotes tBID interaction with BCL(XL). , 2009, Nature structural & molecular biology.

[41]  I. Collinson,et al.  The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure , 2002, The EMBO journal.

[42]  Silke Hutschenreiter,et al.  Two‐substrate association with the 20S proteasome at single‐molecule level , 2004, The EMBO journal.

[43]  H. Koch,et al.  Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. , 2009, Molecular biology of the cell.

[44]  G. van den Bogaart,et al.  Quaternary structure of SecA in solution and bound to SecYEG probed at the single molecule level. , 2011, Structure.

[45]  A. Driessen,et al.  The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. , 2005, Journal of molecular biology.

[46]  W. Wickner,et al.  SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion , 1994, Cell.

[47]  A. Driessen,et al.  The Lateral Gate of SecYEG Opens during Protein Translocation* , 2009, The Journal of Biological Chemistry.

[48]  A. Driessen SecB, a molecular chaperone with two faces. , 2001, Trends in microbiology.

[49]  E. Vrontou,et al.  Structure and function of SecA, the preprotein translocase nanomotor. , 2004, Biochimica et biophysica acta.

[50]  W. Wickner,et al.  Evaluating the oligomeric state of SecYEG in preprotein translocase , 2000, The EMBO journal.

[51]  D. Kendall,et al.  Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon. , 2007, Biochimica et biophysica acta.

[52]  A. Engel,et al.  SecYEG assembles into a tetramer to form the active protein translocation channel , 2000, The EMBO journal.