Developments in modelling of metal cutting processes

Following a brief historical perspective on the development of orthogonal cutting model's, including key work by Merchant and Oxley, the paper concentrates on the use of finite element techniques to simulate two-dimensional orthogonal turning and the subsequent transition to three-dimensional formulations, thus enabling milling and drilling to be realistically modelled. Input requirements including material models, mechanical property data at elevated strain rates and temperatures, contact conditions, and other boundary conditions needed to ensure accurate simulation and predictions are discussed. Current academic research and commercial developments involving simulation of non-conventional processes, microscale cutting, workpiece surface integrity, and microstructure modelling, etc., are also highlighted.

[1]  G. Boothroyd Temperatures in Orthogonal Metal Cutting , 1963 .

[2]  J. Chousal,et al.  A finite element model of EDM based on the Joule effect , 2006 .

[3]  Akhtar S. Khan,et al.  A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures , 1999 .

[4]  Mohamed A. Elbestawi,et al.  Modeling the effects of microstructure in metal cutting , 2007 .

[5]  Yusuf Altintas,et al.  Numerical Analysis of Metal Cutting With Chamfered and Blunt Tools , 2002 .

[6]  Byung-Min Kim,et al.  Rigid-thermoviscoplastic finite element simulation of non-steady-state orthogonal cutting , 2002 .

[7]  Hussein M. Zbib,et al.  FEA modeling and simulation of shear localized chip formation in metal cutting , 1998 .

[8]  D. Umbrello,et al.  The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel , 2007 .

[9]  David R. Owen,et al.  Computational techniques applied to high-speed machining under adiabatic strain localization conditions , 1999 .

[10]  C. Liu,et al.  Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer , 2000 .

[11]  H. Chandrasekaran,et al.  MODELING TOOL STRESSES AND TEMPERATURE EVALUATION IN TURNING USING FINITE ELEMENT METHOD , 1998 .

[12]  Yung C. Shin,et al.  Material Constitutive Modeling Under High Strain Rates and Temperatures Through Orthogonal Machining Tests , 1997, Manufacturing Science and Engineering: Volume 2.

[13]  C. Richard Liu,et al.  The Influence of Material Models on Finite Element Simulation of Machining , 2004 .

[14]  J. Monaghan,et al.  Modelling the orthogonal machining process using coated carbide cutting tools , 1999 .

[15]  Fukuo Hashimoto,et al.  Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry , 2005 .

[16]  Martin Bäker,et al.  The influence of thermal conductivity on segmented chip formation , 2003 .

[17]  E. Usui,et al.  A Photoelastic Analysis of Machining Stresses , 1960 .

[18]  Pierre Joyot,et al.  A numerical simulation of steady state metal cutting , 1998 .

[19]  Dwayne Arola,et al.  Finite Element Modeling of Edge Trimming Fiber Reinforced Plastics , 2002 .

[20]  Mofid Mahdi,et al.  A finite element model for the orthogonal cutting of fiber-reinforced composite materials , 2001 .

[21]  M. Ortiz,et al.  Modelling and simulation of high-speed machining , 1995 .

[22]  Martin Bäker,et al.  Finite Element Simulation of Segmented Chip Formation of Ti6Al4V , 2002 .

[23]  S. Engin Kilic,et al.  A comparison of orthogonal cutting data from experiments with three different finite element models , 2004 .

[24]  T. Sun,et al.  FEM optimization of tool geometry based on the machined near surface's residual stresses generated in diamond turning , 2006 .

[25]  Kyriakos Komvopoulos,et al.  Finite Element Modeling of Orthogonal Metal Cutting , 1991 .

[26]  Xiaomin Deng,et al.  A finite element study of the effect of friction in orthogonal metal cutting , 2002 .

[27]  Toshiyuki Obikawa,et al.  Application of computational machining method to discontinuous chip formation , 1997 .

[28]  Teresa Maria Berruti,et al.  Prediction of residual stress distribution after turning in turbine disks , 2006 .

[29]  Liangchi Zhang,et al.  On the separation criteria in the simulation of orthogonal metal cutting using the finite element method , 1999 .

[30]  J. Strenkowski,et al.  Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting , 1990 .

[31]  Albert J. Shih,et al.  Thermo-Mechanical Finite Element Modeling of the Friction Drilling Process , 2007 .

[32]  David K. Aspinwall,et al.  Modelling of hard part machining , 2002 .

[33]  V. Piispanen Theory of Formation of Metal Chips , 1948 .

[34]  John S. Strenkowski,et al.  Finite element models of orthogonal cutting with application to single point diamond turning , 1988 .

[35]  Yuebin Guo,et al.  Finite Element Modeling of Burr Formation Process in Drilling 304 Stainless Steel , 2000 .

[36]  Mohamed A. Elbestawi,et al.  Modelling the effects of tool-edge radius on residual stresses when orthogonal cutting AISI 316L , 2007 .

[37]  Tuğrul Özel,et al.  The influence of friction models on finite element simulations of machining , 2006 .

[38]  Liangchi Zhang,et al.  An FEM investigation into the behavior of metal matrix composites: tool-particle interaction during orthogonal cutting , 2007 .

[39]  Simon S. Park,et al.  Investigation of micro-cutting operations , 2006 .

[40]  Elisabetta Ceretti,et al.  Application of 2D FEM to chip formation in orthogonal cutting , 1996 .

[41]  J. Sutherland,et al.  Finite element simulation of the orthogonal metal cutting process for qualitative understanding of the effects of crater wear on the chip formation process , 2002 .

[42]  A. S. Branis,et al.  Finite element simulation of chip formation in orthogonal metal cutting , 2001 .

[43]  J. Monaghan,et al.  Modelling the orthogonal machining process using coated cemented carbide cutting tools , 2001 .

[44]  Tom Childs,et al.  MATERIAL PROPERTY NEEDS IN MODELING METAL MACHINING , 1998 .

[45]  Kug Weon Kim,et al.  Development of a thermo-viscoplastic cutting model using finite element method , 1996 .

[46]  Mohamed S. Gadala,et al.  Formulation and survey of ALE method in nonlinear solid mechanics , 1997 .

[47]  Toshiyuki Obikawa,et al.  FEM analysis of cutting sequence effect on mechanical characteristics in machined layer , 1996 .

[48]  Xiaomin Deng,et al.  Finite Element Analysis of the Orthogonal Metal Cutting Process , 2000 .

[49]  M. Gadala,et al.  Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian–Eulerian finite-element method , 2000 .

[50]  M. Elbestawi,et al.  Chip formation during microscale cutting of a medium carbon steel , 2006 .

[51]  Y. Shin,et al.  Multiscale Finite Element Modeling of Silicon Nitride Ceramics Undergoing Laser-Assisted Machining , 2007 .

[52]  M. E. Merchant Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip , 1945 .

[53]  I. Jawahir,et al.  Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius , 2005 .

[54]  Naresh Bhatnagar,et al.  Micro-mechanical modeling of machining of FRP composites – Cutting force analysis , 2007 .

[55]  Larsgunnar Nilsson,et al.  An ALE formulation for the solution of two-dimensional metal cutting problems , 1999 .

[56]  R. Komanduri,et al.  Modeling of thermomechanical shear instability in machining , 1997 .

[57]  P.L.B. Oxley,et al.  A strain-hardening solution for the “shear angle” in orthogonal metal cutting , 1961 .

[58]  Kornel Ehmann,et al.  The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science , 2004 .

[59]  D. Aspinwall,et al.  3D FE modelling of the cutting of Inconel 718 , 2004 .

[60]  S. M. Athavale,et al.  A Partially Constrained Eulerian Orthogonal Cutting Model for Chip Control Tools , 1997 .

[61]  M. G. Stevenson,et al.  Using the Finite Element Method to Determine Temperature Distributions in Orthogonal Machining , 1974 .

[62]  J. Strenkowski,et al.  A Finite Element Model of Orthogonal Metal Cutting , 1985 .

[63]  Tom Childs,et al.  Finite element simulation of chip flow in metal machining , 2001 .

[64]  Elisabetta Ceretti,et al.  FEM simulation of orthogonal cutting: serrated chip formation , 1999 .

[65]  Vinod Yadava,et al.  Finite element prediction of material removal rate due to electro-chemical spark machining , 2006 .

[66]  Yuebin Guo,et al.  A FEM study on mechanisms of discontinuous chip formation in hard machining , 2004 .

[67]  M. Ramulu,et al.  Orthogonal cutting of fiber-reinforced composites: A finite element analysis , 1997 .

[68]  David K. Aspinwall,et al.  Modelling of temperature and forces when orthogonally machining hardened steel , 1999 .

[69]  Mohamed S. Gadala,et al.  On the mesh motion for ALE modeling of metal forming processes , 2002 .

[70]  Y. Shin,et al.  Thermo-mechanical modeling of orthogonal machining process by finite element analysis , 1999 .

[71]  Richard E. DeVor,et al.  Microstructure-Level Modeling of Ductile Iron Machining , 2001, Manufacturing Engineering.

[72]  Albert J. Shih,et al.  Finite element modeling of 3D turning of titanium , 2005 .

[73]  M. E. Merchant Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting , 1945 .

[74]  Tom Childs,et al.  Simulation analysis of machinability of leaded CrMo and MnB structural steels , 1996 .

[75]  Olivier Dalverny,et al.  A three-dimensional transient numerical model of milling , 2001 .

[76]  S. Kaldor,et al.  A broad-brush approach to the selection of general purpose cutting tool geometry for maximum tool life , 1998 .

[77]  P.L.B. Oxley,et al.  An analysis for orthogonal cutting with restricted tool-chip contact , 1962 .