Efficient methods and practical guidelines for simulating isotope effects.

The shift in chemical equilibria due to isotope substitution is frequently exploited to obtain insight into a wide variety of chemical and physical processes. It is a purely quantum mechanical effect, which can be computed exactly using simulations based on the path integral formalism. Here we discuss how these techniques can be made dramatically more efficient, and how they ultimately outperform quasi-harmonic approximations to treat quantum liquids not only in terms of accuracy, but also in terms of computational cost. To achieve this goal we introduce path integral quantum mechanics estimators based on free energy perturbation, which enable the evaluation of isotope effects using only a single path integral molecular dynamics trajectory of the naturally abundant isotope. We use as an example the calculation of the free energy change associated with H/D and (16)O/(18)O substitutions in liquid water, and of the fractionation of those isotopes between the liquid and the vapor phase. In doing so, we demonstrate and discuss quantitatively the relative benefits of each approach, thereby providing a set of guidelines that should facilitate the choice of the most appropriate method in different, commonly encountered scenarios. The efficiency of the estimators we introduce and the analysis that we perform should in particular facilitate accurate ab initio calculation of isotope effects in condensed phase systems.

[1]  A. Pohorille,et al.  Comparison of the structure of harmonic aqueous glasses and liquid water. , 1987, The Journal of chemical physics.

[2]  Thomas E Markland,et al.  A fast path integral method for polarizable force fields. , 2009, The Journal of chemical physics.

[3]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[4]  A. Michaelides,et al.  Quantum nature of the hydrogen bond , 2011, Proceedings of the National Academy of Sciences.

[5]  Gill Mj,et al.  Quantum simulation of hydrogen in metals. , 1987 .

[6]  D. Manolopoulos,et al.  An efficient ring polymer contraction scheme for imaginary time path integral simulations. , 2008, The Journal of chemical physics.

[7]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[8]  Renata M. Wentzcovitch,et al.  Reviews in Mineralogy and Geochemistry: Preface , 2010 .

[9]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[10]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics , 1994 .

[11]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[12]  Thomas E. Markland,et al.  Unraveling quantum mechanical effects in water using isotopic fractionation , 2012, Proceedings of the National Academy of Sciences.

[13]  Edward Teller,et al.  The Vapor Pressure of Isotopes , 1938 .

[14]  A. Chialvo,et al.  Liquid-vapor equilibrium isotopic fractionation of water: how well can classical water models predict it? , 2009, The Journal of chemical physics.

[15]  Joseph A Morrone,et al.  Proton momentum distribution in water: an open path integral molecular dynamics study. , 2007, The Journal of chemical physics.

[16]  Michele Parrinello,et al.  Nuclear quantum effects in ab initio dynamics: Theory and experiments for lithium imide , 2010, 1009.2862.

[17]  Michele Ceriotti,et al.  Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. , 2012, Physical review letters.

[18]  Shigenori Tanaka,et al.  Ab initio Path Integral Molecular Dynamics Based on Fragment Molecular Orbital Method , 2009 .

[19]  Des Spence,et al.  110% , 2007, BMJ : British Medical Journal.

[20]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[21]  Roberto Car,et al.  Nuclear quantum effects in water. , 2008, Physical review letters.

[22]  Berner,et al.  Isotope fractionation and atmospheric oxygen: implications for phanerozoic O(2) evolution , 2000, Science.

[23]  Michele Parrinello,et al.  Accelerating the convergence of path integral dynamics with a generalized Langevin equation. , 2011, The Journal of chemical physics.

[24]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[25]  F. Fernandez-Alonso,et al.  Ab initio nuclear momentum distributions in lithium hydride: assessing nonadiabatic effects , 2011 .

[26]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[27]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[28]  G. Voth,et al.  Rigorous formulation of quantum transition state theory and its dynamical corrections , 1989 .

[29]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[30]  Gregory K. Schenter,et al.  Generalized path integral based quantum transition state theory , 1997 .

[31]  S. Baroni,et al.  Dependence of the crystal lattice constant on isotopic composition: Theory and ab initio calculations for C, Si, and Ge , 1994 .

[32]  Gregory A Voth,et al.  The properties of water: insights from quantum simulations. , 2009, The journal of physical chemistry. B.

[33]  D. Cole,et al.  Equilibrium Oxygen, Hydrogen and Carbon Isotope Fractionation Factors Applicable to Geologic Systems , 2001 .

[34]  J. Horita,et al.  Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature , 1994 .

[35]  Takeshi Yamamoto,et al.  Path-integral virial estimator based on the scaling of fluctuation coordinates: application to quantum clusters with fourth-order propagators. , 2005, The Journal of chemical physics.

[36]  Giovanni Bussi,et al.  Nuclear quantum effects in solids using a colored-noise thermostat. , 2009, Physical review letters.

[37]  Ian R. Craig,et al.  Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. , 2004, The Journal of chemical physics.

[38]  L. Rebelo,et al.  Isotope Effects: in the Chemical, Geological, and Bio Sciences , 2009 .

[39]  Joseph A. Morrone,et al.  Momentum distribution, vibrational dynamics and the potential of mean force in ice , 2011, 1102.0804.

[40]  O. A. von Lilienfeld,et al.  Path Integral Computation of Quantum Free Energy Differences Due to Alchemical Transformations Involving Mass and Potential. , 2011, Journal of chemical theory and computation.

[41]  Mark E. Tuckerman,et al.  Molecular dynamics algorithms for path integrals at constant pressure , 1999 .

[42]  J. Kirkwood Quantum Statistics of Almost Classical Assemblies , 1933 .

[43]  Oliver Riordan,et al.  The inefficiency of re-weighted sampling and the curse of system size in high-order path integration , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  A G Seel,et al.  Simultaneous measurement of lithium and fluorine momentum in 7LiF , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Jirí Vanícek,et al.  Efficient estimators for quantum instanton evaluation of the kinetic isotope effects: application to the intramolecular hydrogen transfer in pentadiene. , 2007, The Journal of chemical physics.

[46]  Thomas E. Markland,et al.  Competing quantum effects in the dynamics of a flexible water model. , 2009, The Journal of chemical physics.

[47]  R. Paniello,et al.  Zinc isotopic evidence for the origin of the Moon , 2012, Nature.

[48]  Michele Parrinello,et al.  Efficient stochastic thermostatting of path integral molecular dynamics. , 2010, The Journal of chemical physics.

[49]  David E. Manolopoulos,et al.  A refined ring polymer contraction scheme for systems with electrostatic interactions , 2008 .

[50]  Jianshu Cao,et al.  On energy estimators in path integral Monte Carlo simulations: dependence of accuracy on algorithm , 1989 .

[51]  Kevin Bowman,et al.  Importance of rain evaporation and continental convection in the tropical water cycle , 2007, Nature.

[52]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[53]  M. Klein,et al.  Hydrogen bonding in water. , 2003, Physical review letters.

[54]  Mark E. Tuckerman,et al.  Quantum dynamics via adiabatic ab initio centroid molecular dynamics , 1999 .