Note on coloring graphs without odd-Kk-minors

We give a short proof that every graph G without an odd K"k-minor is O(klogk)-colorable. This was first proved by Geelen et al. [J. Geelen, B. Gerards, B. Reed, P. Seymour, A. Vetta, On the odd-minor variant of Hadwiger's conjecture, J. Combin. Theory Ser. B 99 (1) (2009) 20-29]. We give a considerably simpler and shorter proof following their approach.

[1]  Ken-ichi Kawarabayashi,et al.  Rooted minor problems in highly connected graphs , 2004, Discret. Math..

[2]  Ken-ichi Kawarabayashi,et al.  Any 7-Chromatic Graphs Has K7 Or K4,4 As A Minor , 2005, Comb..

[3]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[4]  Ken-ichi Kawarabayashi A Weakening of the Odd Hadwiger's Conjecture , 2008, Comb. Probab. Comput..

[5]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[7]  Paul D. Seymour,et al.  Packing Non-Zero A-Paths In Group-Labelled Graphs , 2006, Comb..

[8]  Paul A. Catlin A bound on the chromatic number of a graph , 1978, Discret. Math..

[9]  Ken-ichi Kawarabayashi,et al.  Approximating the list-chromatic number and the chromatic number in minor-closed and odd-minor-closed classes of graphs , 2006, STOC '06.

[10]  Ken-ichi Kawarabayashi,et al.  Linear connectivity forces large complete bipartite minors , 2009, J. Comb. Theory, Ser. B.

[11]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[12]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[13]  Bruce A. Reed,et al.  On the odd-minor variant of Hadwiger's conjecture , 2009, J. Comb. Theory, Ser. B.

[14]  Robin Thomas,et al.  Hadwiger's conjecture forK6-free graphs , 1993, Comb..

[15]  J. Thomas The four color theorem , 1977 .

[16]  Ken-ichi Kawarabayashi,et al.  Some remarks on the odd hadwiger’s conjecture , 2007, Comb..

[17]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[18]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[19]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[20]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[21]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[22]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[23]  W. Mader Existenzn-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte , 1972 .