Quickly deciding minor-closed parameters in general graphs

We construct algorithms for deciding essentially any minor-closed parameter, with explicit time bounds. This result strengthens previous results by N. Robertson, P.D. Seymour [Graph minors. XII. Distance on a surface, Journal of Combinatorial Theory, Series B 64 (2) (1995) 240-272; Graph minors. XX. Wagner's conjecture, Journal of Combinatorial Theory, Series B 92 (2) (2004) 325-357], M. Frick, M. Grohe [Deciding first-order properties of locally tree-decomposable structures, Journal of the ACM 48 (6) (2001) 1184-1206], and M.R. Fellows, M.A. Langston [Nonconstructive tools for proving polynomial-time decidability, Journal of the ACM 35 (3) (1988) 727-739] toward obtaining fixed-parameter algorithms for a general class of parameters.

[1]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[2]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[3]  Paul Seymour,et al.  The metamathematics of the graph minor theorem , 1985 .

[4]  Erik D. Demaine,et al.  Bidimensional Parameters and Local Treewidth , 2004, LATIN.

[5]  B. Mohar,et al.  Graph Minors , 2009 .

[6]  Martin Grohe,et al.  Deciding first-order properties of locally tree-decomposable structures , 2000, JACM.

[7]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[8]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[9]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[10]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[11]  Bruno Courcelle,et al.  Graph Rewriting: An Algebraic and Logic Approach , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[12]  Paul D. Seymour,et al.  Graph Minors .XII. Distance on a Surface , 1995, J. Comb. Theory, Ser. B.

[13]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[14]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on graphs of bounded-genus and H-minor-free graphs , 2004, SODA '04.

[15]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.