TVD FINITE‐DIFFERENCE METHODS FOR COMPUTING HIGH‐SPEED THERMAL AND CHEMICAL NON‐EQUILIBRIUM FLOWS WITH STRONG SHOCKS

Partially‐decoupled upwind‐based total‐variation‐diminishing (TVD) finite‐difference schemes for the solution of the conservation laws governing two‐dimensional non‐equilibrium vibrationally relaxing and chemically reacting flows of thermally‐perfect gaseous mixtures are presented. In these methods, a novel partially‐decoupled flux‐difference splitting approach is adopted. The fluid conservation laws and species concentration and vibrational energy equations are decoupled by means of a frozen flow approximation. The resulting partially‐decoupled gas‐dynamic and thermodynamic subsystems are then solved alternately in a lagged manner within a time marching procedure, thereby providing explicit coupling between the two equation sets. Both time‐split semi‐implicit and factored implicit flux‐limited TVD upwind schemes are described. The semi‐implicit formulation is more appropriate for unsteady applications whereas the factored implicit form is useful for obtaining steady‐state solutions. Extensions of Roe's approximate Riemann solvers, giving the eigenvalues and eigenvectors of the fully coupled systems, are used to evaluate the numerical flux functions. Additional modifications to the Riemann solutions are also described which ensure that the approximate solutions are not aphysical. The proposed partially‐decoupled methods are shown to have several computational advantages over chemistry‐split and fully coupled techniques. Furthermore, numerical results for single, complex, and double Mach reflection flows, as well as corner‐expansion and blunt‐body flows, using a five‐species four‐temperature model for air demonstrate the capabilities of the methods.

[1]  H. C. Yee,et al.  Numerical wave propagation in an advection equation with a nonlinear source term , 1992 .

[2]  T. Shih,et al.  Approximate factorization with source terms , 1991 .

[3]  B. Larrouturou How to preserve the mass fractions positivity when computing compressible multi-component flows , 1991 .

[4]  J. J. Gottlieb,et al.  Numerical investigation of high-temperature effects in the UTIAS-RPI hypersonic impulse tunnel , 1991 .

[5]  M. Liou,et al.  Osher's scheme for real gases , 1991 .

[6]  Seokkwan Yoon,et al.  Fully coupled implicit method for thermochemical nonequilibrium air at suborbital flight speeds , 1991 .

[7]  Meng-Sing Liou,et al.  Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry , 1990 .

[8]  J. Slomski,et al.  Effectiveness of multigrid in accelerating convergence of multidimensional flows in chemical nonequilibrium , 1990 .

[9]  H. C. Yee,et al.  High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows , 1990 .

[10]  Meng-Sing Liou,et al.  Splitting of inviscid fluxes for real gases , 1990 .

[11]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[12]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[13]  H. C. Yee,et al.  High-Resolution Shock-Capturing Schemes For A Real Gas , 1989 .

[14]  Y. Liu,et al.  Nonequilibrium flow computations. I. an analysis of numerical formulations of conversation laws , 1989 .

[15]  Bernard Grossman,et al.  Analysis of flux-split algorithms for Euler's equations with real gases , 1989 .

[16]  H. C. Yee,et al.  Semi-implicit and fully implicit shock-capturing methods for nonequilibrium flows , 1989 .

[17]  Matania Ben-Artzi,et al.  The generalized Riemann problem for reactive flows , 1989 .

[18]  Peter A. Gnoffo,et al.  Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium , 1989 .

[19]  Kamowitz Some observations on boundary conditions for numerical conservation laws. Final report , 1988 .

[20]  P. Glaister A shock‐capturing scheme for body‐fitted meshes , 1988 .

[21]  Paul Glaister,et al.  An approximate linearised Riemann solver for the three-dimensional Euler equations for real gases using operator splitting , 1988 .

[22]  P. Colella,et al.  Nonequilibrium effects in oblique shock-wave reflection , 1988 .

[23]  Paul Glaister,et al.  An approximate linearised Riemann solver for the Euler equations for real gases , 1988 .

[24]  Marcel Vinokur,et al.  Equilibrium gas flow computations. II - An analysis of numerical formulations of conservation laws , 1988 .

[25]  S. Eberhardt,et al.  Shock-Capturing Technique for Hypersonic, Chemically Relaxing Flows , 1987 .

[26]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[27]  H. C. Yee Upwind and Symmetric Shock-Capturing Schemes , 1987 .

[28]  Philip L. Roe,et al.  Efficient construction and utilisation of approximate riemann solutions , 1985 .

[29]  Phillip Colella,et al.  Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .

[30]  I. I. Glass,et al.  A numerical study of oblique shock-wave reflections with experimental comparisons , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Earll M. Murman,et al.  Finite volume method for the calculation of compressible chemically reacting flows , 1985 .

[32]  S. Osher,et al.  A new class of high accuracy TVD schemes for hyperbolic conservation laws. [Total Variation Diminishing] , 1985 .

[33]  Philip L. Roe,et al.  Generalized formulation of TVD Lax-Wendroff schemes , 1984 .

[34]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[35]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[36]  S. F. Davis TVD finite difference schemes and artificial viscosity , 1984 .

[37]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[38]  R. Deschambault Nonstationary oblique-shock-wave reflections in air , 1984 .

[39]  I. I. Glass,et al.  An update on non-stationary oblique shock-wave reflections: actual isopycnics and numerical experiments , 1983, Journal of Fluid Mechanics.

[40]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[41]  R. F. Warming,et al.  Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows , 1976 .

[42]  Hans G. Hornung,et al.  Non-equilibrium ideal-gas dissociation after a curved shock wave , 1976, Journal of Fluid Mechanics.

[43]  Marcel Vinokur,et al.  Conservation equations of gasdynamics in curvilinear coordinate systems , 1974 .

[44]  Michael G. Dunn,et al.  Theoretical and Experimental Studies of Reentry Plasmas , 1973 .

[45]  Hans G. Hornung,et al.  Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders , 1972, Journal of Fluid Mechanics.

[46]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[47]  J. Drewry An experimental investigation of nonequilibrium corner expansion flows of dissociated oxygen , 1967 .

[48]  Roger C. Millikan,et al.  Systematics of Vibrational Relaxation , 1963 .

[49]  P. Lax,et al.  Systems of conservation laws , 1960 .

[50]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[51]  Bath Ba NUMERICAL WAVE PROPAGATION IN AN ADVECTION EQUATION WITH A NONLINEAR SOURCE TERM* D. F. GRIFFITHStt, A. M. STUARTt?, AND H. C. YEEt , 1992 .

[52]  David C. Slack,et al.  Characteristic-based algorithms for flows in thermochemical nonequilibrium , 1990 .

[53]  P. A. Gnoffo,et al.  Point-implicit relaxation strategies for viscous, hypersonic flows , 1989 .

[54]  Charles L. Merkle,et al.  A set of strongly coupled, upwind algorithms for computing flows in chemical nonequilibrium , 1989 .

[55]  Sukumar R. Chakravarthy,et al.  Development of upwind schemes for the Euler equations , 1987 .

[56]  Peter A. Gnoffo,et al.  Enhancements to Program LAURA for computation of three-dimensional hypersonic flow , 1987 .

[57]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[58]  S. Osher,et al.  Very High Order Accurate TVD Schemes , 1986 .

[59]  S. Osher,et al.  Computing with high-resolution upwind schemes for hyperbolic equations , 1985 .

[60]  E. Murman,et al.  Analysis of embedded shock waves calculated by relaxation methods. , 1973 .

[61]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[62]  I. I. Glass Theoretical and experimental nozzle and corner expansion flows of dissociated and ionized gases. , 1967 .

[63]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .