Fast and efficient computation of directional distance estimators

Directional distances provide useful, flexible measures of technical efficiency of production units relative to the efficient frontier of the attainable set in input-output space. In addition, the additive nature of directional distances permits negative input or outputs quantities. The choice of the direction allows analysis of different strategies for the units attempting to reach the efficient frontier. Simar et al. (Eur J Oper Res 220:853–864, 2012 ) and Simar and Vanhems (J Econom 166:342–354, 2012 ) develop asymptotic properties of full-envelopment, FDH and DEA estimators of directional distances as well as robust order- m and order- $$\alpha $$ α directional distance estimators. Extensions of these estimators to measures conditioned on environmental variables Z are also available (e.g., see Daraio and Simar in Eur J Oper Res 237:358–369, 2014 ). The resulting estimators have been shown to share the properties of their corresponding radial measures. However, to date the algorithms proposed for computing the directional distance estimates suffer from various numerical drawbacks (Daraio and Simar in Eur J Oper Res 237:358–369, 2014 ). In particular, for the order- m versions (conditional and unconditional) only approximations, based on Monte-Carlo methods, have been suggested, involving additional computational burden. In this paper we propose a new fast and efficient method to compute exact values of the directional distance estimates for all the cases (full and partial frontier cases, unconditional or conditional to external factors), that overcome all previous difficulties. This new method is illustrated on simulated and real data sets. Matlab code for computation is provided in an “Appendix”.

[1]  P. W. Wilson,et al.  Asymptotics for DEA estimators in non-parametric frontier models , 2003 .

[2]  Léopold Simar,et al.  Statistical Approaches for Non‐parametric Frontier Models: A Guided Tour , 2015 .

[3]  Nickolaos G. Tzeremes,et al.  National culture and eco-efficiency: an application of conditional partial nonparametric frontiers , 2013 .

[4]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[5]  R. Shepherd Theory of cost and production functions , 1970 .

[6]  S. Managi,et al.  Measuring the Effect of Economic Growth on Countries’ Environmental Efficiency: A Conditional Directional Distance Function Approach , 2017 .

[7]  Nickolaos G. Tzeremes,et al.  Financial development and productive inefficiency: A robust conditional directional distance function approach , 2016 .

[8]  Léopold Simar,et al.  How to measure the impact of environmental factors in a nonparametric production model , 2012, Eur. J. Oper. Res..

[9]  Alessandro Manello,et al.  Productivity growth, environmental regulation and win-win opportunities: The case of chemical industry in Italy and Germany , 2017, Eur. J. Oper. Res..

[10]  P. W. Wilson,et al.  Estimation and inference in two-stage, semi-parametric models of production processes , 2007 .

[11]  Jeffrey S. Racine,et al.  Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions , 2013 .

[12]  Michael Zschille Consolidating the water industry: an analysis of the potential gains from horizontal integration in a conditional efficiency framework , 2012 .

[13]  Léopold Simar,et al.  Detecting Outliers in Frontier Models: A Simple Approach , 2003 .

[14]  Léopold Simar,et al.  Probabilistic characterization of directional distances and their robust versions , 2012 .

[15]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[16]  Nickolaos G. Tzeremes,et al.  CEO compensation and bank efficiency: An application of conditional nonparametric frontiers , 2016, Eur. J. Oper. Res..

[17]  Daniel Santín,et al.  Assessing European primary school performance through a conditional nonparametric model , 2017, J. Oper. Res. Soc..

[18]  Léopold Simar,et al.  Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications , 2007 .

[19]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[20]  Nickolaos G. Tzeremes,et al.  Public sector transparency and countries’ environmental performance: A nonparametric analysis , 2014 .

[21]  Léopold Simar,et al.  FDH Efficiency Scores from a Stochastic Point of View , 1997 .

[22]  G. Debreu The Coefficient of Resource Utilization , 1951 .

[23]  J. Florens,et al.  Frontier estimation and extreme values theory , 2010, 1011.5722.

[24]  Irène Gijbels,et al.  Estimating Frontier Cost Models Using Extremiles , 2011 .

[25]  P. W. Wilson,et al.  Estimation and Inference in Nonparametric Frontier Models: Recent Developments and Perspectives , 2013 .

[26]  L. Simar,et al.  Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .

[27]  Marijn Verschelde,et al.  An environment-adjusted evaluation of citizen satisfaction with local police effectiveness: Evidence from a conditional Data Envelopment Analysis approach , 2012, Eur. J. Oper. Res..

[28]  Tom Broekel Collaboration Intensity and Regional Innovation Efficiency in Germany—A Conditional Efficiency Approach , 2012 .

[29]  I. Gijbels,et al.  Robustness and inference in nonparametric partial frontier modeling , 2011 .

[30]  Kristof De Witte,et al.  One- and multi-directional conditional efficiency measurement - Efficiency in Lithuanian family farms , 2015, Eur. J. Oper. Res..

[31]  Paul W. Wilson,et al.  Dimension reduction in nonparametric models of production , 2017, Eur. J. Oper. Res..

[32]  Nickolaos G. Tzeremes,et al.  Population, economic growth and regional environmental inefficiency: evidence from U.S. states , 2016 .

[33]  Kristof De Witte,et al.  The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach , 2017, Eur. J. Oper. Res..

[34]  Léopold Simar,et al.  Measuring firm performance using nonparametric quantile-type distances , 2017 .

[35]  A. Guerrini,et al.  Identifying the performance drivers of wastewater treatment plants through conditional order-m efficiency analysis , 2016 .

[36]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[37]  Léopold Simar,et al.  Frontier estimation in nonparametric location-scale models , 2014 .

[38]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[39]  A. Ruiz-Gazen,et al.  ROBUST NONPARAMETRIC FRONTIER ESTIMATORS: QUALITATIVE ROBUSTNESS AND INFLUENCE FUNCTION , 2006 .

[40]  Léopold Simar,et al.  Nonparametric conditional efficiency measures: asymptotic properties , 2010, Ann. Oper. Res..

[41]  Yauheniya Varabyova,et al.  Comparing the Efficiency of Hospitals in Italy and Germany: Nonparametric Conditional Approach Based on Partial Frontier , 2016, Health Care Management Science.

[42]  Léopold Simar,et al.  Central Limit Theorems for Conditional Efficiency Measures and Tests of the ‘Separability’ Condition in Non�?Parametric, Two�?Stage Models of Production , 2018 .

[43]  Léopold Simar,et al.  Explaining inefficiency in nonparametric production models: the state of the art , 2014, Ann. Oper. Res..

[44]  Ramón Fuentes,et al.  Conditional Order-m Efficiency of Wastewater Treatment Plants: The Role of Environmental Factors , 2015 .

[45]  P. W. Wilson,et al.  Inference by the m out of n bootstrap in nonparametric frontier models , 2011 .

[46]  Alfons Oude Lansink,et al.  Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach , 2014, Eur. J. Oper. Res..

[47]  Léopold Simar,et al.  Directional distances and their robust versions: Computational and testing issues , 2013, Eur. J. Oper. Res..

[48]  Carla Haelermans,et al.  The role of innovations in secondary school performance - Evidence from a conditional efficiency model , 2012, Eur. J. Oper. Res..

[49]  George Emm. Halkos,et al.  A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions , 2013, Eur. J. Oper. Res..

[50]  J. Florens,et al.  Regularization of Nonparametric Frontier Estimators , 2012 .

[51]  Yauheniya Varabyova,et al.  Integrating quality into the nonparametric analysis of efficiency: a simulation comparison of popular methods , 2018, Ann. Oper. Res..

[52]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[53]  R. Färe,et al.  Efficiency and Productivity: Malmquist and More , 2008 .

[54]  Rui Cunha Marques,et al.  Economies of scope in the health sector: The case of Portuguese hospitals , 2018, Eur. J. Oper. Res..

[55]  R. Färe,et al.  Benefit and Distance Functions , 1996 .

[56]  Léopold Simar,et al.  Unobserved heterogeneity and endogeneity in nonparametric frontier estimation , 2016 .

[57]  Nickolaos G. Tzeremes,et al.  Regional environmental performance and governance quality: a nonparametric analysis , 2015 .

[58]  B. Geys,et al.  Evaluating efficient public good provision: Theory and evidence from a generalised conditional efficiency model for public libraries , 2011 .

[59]  Léopold Simar,et al.  Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach , 2005 .

[60]  Nickolaos G. Tzeremes Efficiency dynamics in Indian banking: A conditional directional distance approach , 2015, Eur. J. Oper. Res..

[61]  Cristina Polo,et al.  Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach , 2017 .

[62]  Léopold Simar,et al.  Statistical inference for DEA estimators of directional distances , 2012, Eur. J. Oper. Res..

[63]  Seok-Oh Jeong,et al.  ASYMPTOTIC DISTRIBUTION OF CONICAL-HULL ESTIMATORS OF DIRECTIONAL EDGES , 2010 .

[64]  Léopold Simar,et al.  Optimal bandwidth selection for conditional efficiency measures: A data-driven approach , 2010, Eur. J. Oper. Res..