Edge of Chaos and Local Activity Domain of FitzHugh-Nagumo Equation

The local activity theory [Chua, 97] offers a constructive analytical tool for predicting whether a nonlinear system composed of coupled cells, such as reaction-diffusion and lattice dynamical systems, can exhibit complexity. The fundamental result of the local activity theory asserts that a system cannot exhibit emergence and complexity unless its cells are locally active. This paper gives the first in-depth application of this new theory to a specific Cellular Nonlinear Network (CNN) with cells described by the FitzHugh–Nagumo Equation. Explicit inequalities which define uniquely the local activity parameter domain for the FitzHugh–Nagumo Equation are presented. It is shown that when the cell parameters are chosen within a subset of the local activity parameter domain, where at least one of the equilibrium state of the decoupled cells is stable, the probability of the emergence of complex nonhomogenous static as well as dynamic patterns is greatly enhanced regardless of the coupling parameters. This precisely-defined parameter domain is called the "edge of chaos", a terminology previously used loosely in the literature to define a related but much more ambiguous concept. Numerical simulations of the CNN dynamics corresponding to a large variety of cell parameters chosen on, or nearby, the "edge of chaos" confirmed the existence of a wide spectrum of complex behaviors, many of them with computational potentials in image processing and other applications. Several examples are presented to demonstrate the potential of the local activity theory as a novel tool in nonlinear dynamics not only from the perspective of understanding the genesis and emergence of complexity, but also as an efficient tool for choosing cell parameters in such a way that the resulting CNN is endowed with a brain-like information processing capability.