ASYMPTOTIC PROPERTIES OF AALEN-JOHANSEN INTEGRALS FOR COMPETING RISKS DATA

[1]  Hideyuki Imai,et al.  Kullback-Leibler Information Consistent Estimation for Censored Data , 2001 .

[2]  Grace L. Yang,et al.  On the strong convergence of the product-limit estimator and its integrals under censoring and random truncation , 2000 .

[3]  Henry W. Block,et al.  A Continuous, Bivariate Exponential Extension , 1974 .

[4]  David W. Mauro,et al.  A Combinatoric Approach to the Kaplan-Meier Estimator , 1985 .

[5]  Winfried Stute,et al.  The Bias of Kaplan-Meier Integrals , 1994 .

[6]  Jane-ling Wang M-estimators for Censored Data: Strong Consistency , 1995 .

[7]  R. Gill Large Sample Behaviour of the Product-Limit Estimator on the Whole Line , 1983 .

[8]  Ian W. McKeague,et al.  Some Tests for Comparing Cumulative Incidence Functions and Cause-Specific Hazard Rates , 1994 .

[9]  M. Zhou,et al.  Two-sided bias bound of the Kaplan-Meier estimator , 1988 .

[10]  V T Farewell,et al.  The analysis of failure times in the presence of competing risks. , 1978, Biometrics.

[11]  Winfried Stute,et al.  THE STATISTICAL ANALYSIS OF KAPLAN-MEIER INTEGRALS * , 1995 .

[12]  W. R. Buckland Theory of Competing Risks , 1978 .

[13]  Winfried Stute,et al.  The jackknife estimate of a Kaplan-Meier integral , 1994 .

[14]  W. Stute,et al.  The strong law under random censorship , 1993 .

[15]  M. Crowder Classical Competing Risks , 2001 .

[16]  H. Seal Studies in the history of probability and statistics , 1977 .

[17]  G. Enderlein,et al.  Chiang, Ch. L.: Introduction to Stochastic Processes in Biostatistics. Wiley, & Sons, Inc., New York, London, Sydney 1968. 301 S., 1 Abb., 25 Tab., Preis 131 s , 1970 .

[18]  Song Yang A central limit theorem for functionals of the Kaplan--Meier estimator , 1994 .

[19]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[20]  Winfried Stute,et al.  The Central Limit Theorem Under Random Censorship , 1995 .

[21]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[22]  D. Oakes An approximate likelihood procedure for censored data. , 1986, Biometrics.