Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging.

The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation.

[1]  M. Forsyth,et al.  In Situ, Real-Time Visualization of Electrochemistry Using Magnetic Resonance Imaging , 2013, The journal of physical chemistry letters.

[2]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[3]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[4]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[5]  M. Froment,et al.  Behavior of Secondary Lithium and Aluminum‐Lithium Electrodes in Propylene Carbonate , 1980 .

[6]  N. Balsara,et al.  Lithium Metal Stability in Batteries with Block Copolymer Electrolytes , 2013 .

[7]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[8]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[9]  Hailong Chen,et al.  In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. , 2010, Nature materials.

[10]  Francesco De Carlo,et al.  Improved tomographic reconstructions using adaptive time-dependent intensity normalization. , 2010, Journal of synchrotron radiation.

[11]  A. Phillion,et al.  Coupling in situ synchrotron X-ray tomographic microscopy and numerical simulation to quantify the influence of intermetallic formation on permeability in aluminium-silicon-copper alloys , 2014 .

[12]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[13]  Nigel P. Brandon,et al.  The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes , 2014 .

[14]  Christoph Rau,et al.  Coherent imaging at the Diamond beamline I13 , 2011 .

[15]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[16]  Jim P. Zheng,et al.  Non-Destructive Monitoring of Charge-Discharge Cycles on Lithium Ion Batteries using 7Li Stray-Field Imaging , 2013, Scientific Reports.

[17]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[18]  N. Imanishi,et al.  Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells , 2010 .

[19]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[20]  David R. Ely,et al.  Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes , 2013 .

[21]  Charles W. Monroe,et al.  Direct in situ measurements of Li transport in Li-ion battery negative electrodes , 2009 .

[22]  Françoise Peyrin,et al.  Observation of microstructure and damage in materials by phase sensitive radiography and tomography , 1997 .

[23]  Thomas Hanemann,et al.  Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy , 2013 .