Regularity of solutions for an optimal control problem with mixed control-state constraints

A class of optimal control problems for a semilinear elliptic partial differential equation with mixed control-state constraints is considered. Existence results of an optimal control and necessary optimality conditions are stated. Moreover, a projection formula is derived that is equivalent to the necessary optimality conditions. As main result, the Lipschitz continuity of the optimal control is obtained.

[1]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[2]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[3]  F. Tröltzsch A Minimum Principle and a Generalized Bang‐Bang‐Principle for a Distributed Optimal Control Problem with Constraints on Control and State , 1979 .

[4]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[5]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[6]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[7]  E. Casas Boundary control of semilinear elliptic equations with pointwise state constraints , 1993 .

[8]  Fredi Tröltzsch,et al.  Optimal control of semilinear parabolic equations with state-constraints of bottleneck type , 1999 .

[9]  J. P. Raymond,et al.  Optimal Control Problems with Mixed Control-State Constraints , 2000, SIAM J. Control. Optim..

[10]  Fredi Tröltzsch,et al.  Sufficient Second-Order Optimality Conditions for a Parabolic Optimal Control Problem with Pointwise Control-State Constraints , 2003, SIAM J. Control. Optim..

[11]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[12]  Fredi Tröltzsch,et al.  Regular Lagrange Multipliers for Control Problems with Mixed Pointwise Control-State Constraints , 2005, SIAM J. Optim..

[13]  Fredi Tröltzsch,et al.  Existence of Regular Lagrange Multipliers for a Nonlinear Elliptic Optimal Control Problem with Pointwise Control-State Constraints , 2006, SIAM J. Control. Optim..

[14]  A. Ro¨sch,et al.  Sufficient Second-Order Optimality Conditions for an Elliptic Optimal Control Problem with Pointwise Control-State Constraints , 2006 .

[15]  Emilio Carrizosa,et al.  Deriving weights in multiple-criteria decision making with support vector machines , 2006 .