Femtosecond nonlinear fiber optics in the ionization regime.

By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

[1]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[2]  N. Bloembergen,et al.  The influence of electron plasma formation on superbroadening in light filaments , 1973 .

[3]  Philipp Hölzer,et al.  Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers. , 2011, Physical review letters.

[4]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[5]  J. Wolf,et al.  Higher-order Kerr terms allow ionization-free filamentation in gases. , 2010, Physical review letters.

[6]  Paul Kinsler Optical pulse propagation with minimal approximations , 2010 .

[7]  Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers , 2007 .

[8]  B Hafizi,et al.  Propagation of intense short laser pulses in the atmosphere. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Chen,et al.  Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[10]  S. Skupin,et al.  Ultrashort filaments of light in weakly ionized, optically transparent media , 2007 .

[11]  Ferenc Krausz,et al.  Light Propagation in Field-Ionizing Media: Extreme Nonlinear Optics , 1999 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  P. Russell,et al.  Influence of ionization on ultrafast gas-based nonlinear fiber optics. , 2011, Optics express.

[14]  G. Wong,et al.  Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber. , 2010, Optics letters.

[15]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[16]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[17]  Andrew G. Glen,et al.  APPL , 2001 .

[18]  Ursula Keller,et al.  Femtosecond laser oscillators for high-field science , 2008 .

[19]  Soliton blueshift in tapered photonic crystal fibers. , 2010, Physical review letters.

[20]  M. Murnane,et al.  The attosecond nonlinear optics of bright coherent X-ray generation , 2010 .

[21]  R. Sauerbrey,et al.  Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas , 1993 .

[22]  P St J Russell,et al.  Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. , 2011, Physical review letters.

[23]  W. M. Wood,et al.  Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting , 1993 .

[24]  F. Benabid,et al.  High harmonic generation in a gas-filled hollow-core photonic crystal fiber , 2009 .

[25]  O. Svelto,et al.  A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses , 1997 .

[26]  Nonlinear Guided Wave Phenomena , 1990 .

[27]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.