Enhancing Graph Kernels via Successive Embeddings
暂无分享,去创建一个
[1] S. V. N. Vishwanathan,et al. A Structural Smoothing Framework For Robust Graph Comparison , 2015, NIPS.
[2] Risi Kondor,et al. The Multiscale Laplacian Graph Kernel , 2016, NIPS.
[3] Hisashi Kashima,et al. Marginalized Kernels Between Labeled Graphs , 2003, ICML.
[4] Kurt Mehlhorn,et al. Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..
[5] Yannis Stavrakas,et al. Shortest-Path Graph Kernels for Document Similarity , 2017, EMNLP.
[6] Thomas Gärtner,et al. On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.
[7] Michalis Vazirgiannis,et al. A Degeneracy Framework for Graph Similarity , 2018, IJCAI.
[8] Bernhard Schölkopf,et al. Kernel Methods in Computational Biology , 2005 .
[9] Michalis Vazirgiannis,et al. Matching Node Embeddings for Graph Similarity , 2017, AAAI.
[10] Jan Ramon,et al. Expressivity versus efficiency of graph kernels , 2003 .
[11] Thomas Gärtner,et al. Cyclic pattern kernels for predictive graph mining , 2004, KDD.
[12] Pinar Yanardag,et al. Deep Graph Kernels , 2015, KDD.
[13] Hans-Peter Kriegel,et al. Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).
[14] Devdatt P. Dubhashi,et al. Global graph kernels using geometric embeddings , 2014, ICML.
[15] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[16] Kurt Mehlhorn,et al. Efficient graphlet kernels for large graph comparison , 2009, AISTATS.
[17] Sugiyama Mahito,et al. Halting in Random Walk Kernels , 2015 .