Raman-shifted eye-safe aerosol lidar.

The design features of, and first observations from, a new elastic backscatter lidar system at a wavelength of 1543 nm are presented. The transmitter utilizes stimulated Raman scattering in high-pressure methane to convert fundamental Nd:YAG radiation by means of the 1st Stokes shift. The wavelength-converting gas cell features multipass operation and internal fans. Unlike previous lidar developments that used Raman scattering in methane, the pump beam is not focused in the present configuration. This feature prevents optical breakdown of the gas inside the cell. Additionally, the gas cell is injection seeded by a diode to improve conversion efficiency and beam quality. The receiver uses a 40.6-cm-diameter telescope and a 200-microm InGaAs avalanche photodiode. The system is capable of operating in a dual-wavelength mode (1064 and 1543 nm simultaneously) for comparison or in a completely eye-safe mode. The system is capable of transmitting an energy of more than 200 mJ/pulse at 10 Hz. Aerosol backscatter data from vertical and horizontal pointing periods are shown.

[1]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[2]  Hergen Eilers,et al.  Performance of a Cr:YAG laser , 1993 .

[3]  R. Wallenstein,et al.  Investigation of the spatial beam quality of pulsed ns-OPOs , 2003 .

[4]  S. Ruschin,et al.  Stimulated Raman scattering in methane-experimental optimization and numerical model , 1994 .

[5]  Dale A. Richter,et al.  Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University , 2002, SPIE Optics + Photonics.

[6]  T. F. Johnston,et al.  M2 concept characterizes beam quality , 1990 .

[7]  A. Anderson,et al.  The Raman effect , 1971 .

[8]  K. Petermann,et al.  Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5−xO12 , 1994 .

[9]  G G Gimmestad,et al.  Initial measurements using a 1.54-microm eyesafe Raman shifted lidar. , 1989, Applied optics.

[10]  J. Spinhirne,et al.  Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mum by airborne hard-target-calibrated Nd:YAG /methane Raman lidar. , 1997, Applied optics.

[11]  J. G. Wessel,et al.  Efficient seeding of a Raman amplifier with a visible laser diode. , 1994, Optics letters.

[12]  V. Mitev,et al.  Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers. , 1997, Applied optics.

[13]  Dennis K. Killinger,et al.  Optimal detector selection for a 1.5 micron KTP OPO atmospheric Lidar , 1999 .

[14]  T. Trickl,et al.  A powerful eyesafe infrared aerosol lidar: Application of stimulated Raman backscattering of 1.06 μm radiation , 1994 .

[15]  P F Moulton,et al.  High-average-power KTiOAsO4 optical parametric oscillator. , 1998, Optics letters.

[16]  Gary G. Gimmestad,et al.  Boundary layer height measurements with an eyesafe Lidar , 1994, Other Conferences.

[17]  Dennis K. Killinger,et al.  High-power eye-safe 1.57-um optical parametric oscillator (OPO) lidar for atmospheric boundary-layer measurements , 1995, Other Conferences.