Thermal runaway caused fire and explosion of lithium ion battery

[1]  R. Holze,et al.  Cathode materials modified by surface coating for lithium ion batteries , 2006 .

[2]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[3]  D. Aurbach,et al.  Influence of the PVdF binder on the stability of LiCoO2 electrodes , 2005 .

[4]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[5]  Qingsong Wang,et al.  Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries , 2006 .

[6]  Kang Xu,et al.  LiBOB: Is it an alternative salt for lithium ion chemistry? , 2005 .

[7]  J. Dahn,et al.  High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene , 2005 .

[8]  H. Lee,et al.  Effect of carbon coating on elevated temperature performance of graphite as lithium-ion battery anode material , 2004 .

[9]  Shriram Santhanagopalan,et al.  State of charge estimation using an unscented filter for high power lithium ion cells , 2010 .

[10]  S. Mao,et al.  Thermal modelling of new Li-ion cell design modifications , 2010 .

[11]  Xiaohua Ma,et al.  Xylene as a New Polymerizable Additive for Overcharge Protection of Lithium Ion Batteries , 2009 .

[12]  Chusheng Chen,et al.  Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12 , 2008 .

[13]  Ralph E. White,et al.  An Efficient Electrochemical–Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method , 2010 .

[14]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[15]  Hochun Lee,et al.  Proton and hydrogen formation by cyclohexyl benzene during overcharge of Li-ion batteries , 2007 .

[16]  Ralph E. White,et al.  Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries , 2006 .

[17]  H. X. Yang,et al.  A polytriphenylamine-modified separator with reversible overcharge protection for 3.6 V-class lithium-ion battery , 2009 .

[18]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: Simultaneous state and parameter estimation , 2006 .

[19]  A. Negishi,et al.  Thermal behaviors of lithium-ion cells during overcharge , 2001 .

[20]  Y. Chung,et al.  Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance , 2009 .

[21]  H. X. Yang,et al.  A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries , 2007 .

[22]  F. M. Gray Solid Polymer Electrolytes: Fundamentals and Technological Applications , 1991 .

[23]  M. Armand,et al.  Pregnancy: A cloned horse born to its dam twin , 2003, Nature.

[24]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[25]  A. Jossen,et al.  Reliable battery operation — a challenge for the battery management system , 1999 .

[26]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[27]  T. Tsumura,et al.  Surface modification of natural graphite particles for lithium ion batteries , 2000 .

[28]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[29]  Mohammed M. Farid,et al.  Mechanical-electrochemical modeling of Li-ion battery designed for an electric scooter , 2006 .

[30]  J. Newman,et al.  Thermal Modeling of the Lithium/Polymer Battery .1. Discharge Behavior of a Single-Cell , 1995 .

[31]  D. Aurbach,et al.  The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions , 2003 .

[32]  Jaeshin Yi,et al.  Modelling the thermal behaviour of a lithium-ion battery during charge , 2011 .

[33]  Jaephil Cho,et al.  A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. , 2003, Angewandte Chemie.

[34]  G. Fey,et al.  TiO2 coating for long-cycling LiCoO2: A comparison of coating procedures , 2005 .

[35]  Sang‐young Lee,et al.  Performances and thermal stability of LiCoO2 cathodes encapsulated by a new gel polymer electrolyte , 2007 .

[36]  E. Takeuchi,et al.  A study of the overcharge reaction of lithium-ion batteries , 2001 .

[37]  S. Moon,et al.  Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries , 2008 .

[38]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[39]  E. Roth,et al.  Thermal abuse performance of high-power 18650 Li-ion cells , 2004 .

[40]  Jaephil Cho,et al.  Who will drive electric vehicles, olivine or spinel? , 2011 .

[41]  J. Arai A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries , 2002 .

[42]  M. Taggougui,et al.  Application of a nitroxide radical as overcharge protection in rechargeable lithium batteries , 2007 .

[43]  Chusheng Chen,et al.  Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode , 2006 .

[44]  Binggang Cao,et al.  Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application , 2010 .

[45]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[46]  Chusheng Chen,et al.  Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries , 2005 .

[47]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[48]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[49]  L. Xiao,et al.  Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries , 2004 .

[50]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[51]  Ho‐Sung Kim,et al.  Redox shuttle additives for chemical overcharge protection in lithium ion batteries , 2002 .

[52]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[53]  J. Selman,et al.  Thermal modeling and design considerations of lithium-ion batteries , 1999 .

[54]  J. Arai Nonflammable Methyl Nonafluorobutyl Ether for Electrolyte Used in Lithium Secondary Batteries , 2003 .

[55]  S. Chakraborty,et al.  Thermal runaway inhibitors for lithium battery electrolytes , 2006 .

[56]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[57]  Zhanxu Yang,et al.  Enhanced overcharge behavior and thermal stability of commercial LiCoO2 by coating with a novel material , 2008 .

[58]  Shin-Jung Choi,et al.  Electrochemistry of Conductive Polymers 42. Mixed Polymer Films as an Overcharge Inhibitor for Lithium-Ion Batteries , 2008 .

[59]  Chun-hua Chen,et al.  Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes , 2007 .

[60]  M. Yoshio,et al.  Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance , 2006 .

[61]  G. Blomgren Liquid electrolytes for lithium and lithium-ion batteries , 2003 .

[62]  H. X. Yang,et al.  A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries , 2004 .

[63]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[64]  Makiko Kise,et al.  Effect of the Addition of Conductive Material to Positive Temperature Coefficient Cathodes of Lithium-Ion Batteries , 2005 .

[65]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[66]  Chun-hua Chen,et al.  Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes , 2010 .

[67]  B. Jung,et al.  Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO2 in a Li-ion cell , 2004 .

[68]  P. Stroeve,et al.  Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4 , 2004 .

[69]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[70]  J. Arai,et al.  Binary Mixed Solvent Electrolytes Containing Trifluoropropylene Carbonate for Lithium Secondary Batteries , 2002 .

[71]  Ganesan Nagasubramanian,et al.  Experimental triggers for internal short circuits in lithium-ion cells , 2011 .

[72]  K. Kitoh,et al.  100 Wh Large size Li-ion batteries and safety tests , 1999 .

[73]  Xiangming Feng,et al.  Copolymerization of polytriphenylamine with coumarin to improve the oxidation potential and LiFePO4 battery overcharge tolerance , 2009 .

[74]  Tae-Hee Kim,et al.  Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries , 2011 .

[75]  Qingsong Wang,et al.  Enhancing the safety of lithium ion batteries by 4-isopropyl phenyl diphenyl phosphate , 2007 .

[76]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[77]  James W. Evans,et al.  Three‐Dimensional Thermal Modeling of Lithium‐Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile , 1994 .

[78]  Makiko Kise,et al.  Relation between composition of the positive electrode and cell performance and safety of lithium-ion PTC batteries , 2007 .

[79]  J. Yamaki,et al.  Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells , 2002 .

[80]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[81]  Weishan Li,et al.  Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries , 2008 .

[82]  S. Moon,et al.  Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries , 2009 .

[83]  Zonghai Chen,et al.  LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries , 2006 .

[84]  Young‐Jun Kim,et al.  Prospective materials and applications for Li secondary batteries , 2011 .

[85]  J. Yamaki,et al.  Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode , 2003 .

[86]  H. X. Yang,et al.  Diphenylamine: A safety electrolyte additive for reversible overcharge protection of 3.6 V-class lithium ion batteries , 2008 .

[87]  Andrew Mills,et al.  Simulation of passive thermal management system for lithium-ion battery packs , 2005 .

[88]  Jin-hua Sun,et al.  Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries , 2007 .

[89]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[90]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[91]  D. Aurbach,et al.  The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS , 2001 .

[92]  T. Fuchigami,et al.  Regioselective Anodic Monofluorination of Ethers, Lactones, Carbonates, and Esters Using Ionic Liquid Fluoride Salts , 2006 .

[93]  Qingsong Wang,et al.  Effect of sulfites on the performance of LiBOB/-γ-butyrolactone electrolytes , 2011 .

[94]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[95]  C. Wan,et al.  Thermal Analysis of Spirally Wound Lithium Batteries , 2006 .

[96]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[97]  Xuemei Zhang,et al.  Synthesis and characterization of Mg3(PO4)2-coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode material for Li-ion battery , 2009 .

[98]  Mao-Sung Wu,et al.  Heat dissipation design for lithium-ion batteries , 2002 .

[99]  K. Edström,et al.  Temperature dependence of the passivation layer on graphite , 1999 .

[100]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[101]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[102]  E. Takeuchi,et al.  Abuse Testing of Lithium-Ion Batteries: Characterization of the Overcharge Reaction of LiCoO2/Graphite Cells , 2001 .

[103]  Jaephil Cho,et al.  Synthesis, Thermal, and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.1Mn0.1 O 2 Cathode Materials for a Li-Ion Cell , 2004 .

[104]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[105]  J. Dahn,et al.  Spectroelectrochemical Studies of Redox Shuttle Overcharge Additive for LiFePO4-Based Li-Ion Batteries , 2005 .

[106]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[107]  J. Selman,et al.  Cooperative research on safety fundamentals of lithium batteries , 2001 .

[108]  J. Yamaki,et al.  Thermal stability of graphite anode with electrolyte in lithium-ion cells , 2002 .

[109]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .

[110]  J. Yamaki,et al.  Thermalgravimetry-mass spectrometry studies on the thermal stability of graphite anodes with electrolyte in lithium-ion battery , 2006 .

[111]  H. X. Yang,et al.  Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery , 2006 .

[112]  S. Moon,et al.  Electrochemical Performance of Li-Ion Batteries Containing Biphenyl, Vinyl Ethylene Carbonate in Liquid Electrolyte , 2007 .

[113]  G. Venugopal Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries , 2001 .

[114]  R. Staniewicz,et al.  Open-Circuit Voltage Study of Graphite-Coated Copper Foil Electrodes in Lithium-Ion Battery Electrolytes , 2003 .

[115]  Zonghai Chen,et al.  Multi-scale study of thermal stability of lithiated graphite , 2011 .

[116]  Yan‐Bing He,et al.  The cooperative effect of tri(β-chloromethyl) phosphate and cyclohexyl benzene on lithium ion batteries , 2007 .

[117]  S. Moon,et al.  Effects of Trioctyl Phosphate and Cresyl Diphenyl Phosphate as flame-retarding additives for Li-Ion battery electrolytes , 2009 .

[118]  Kang Xu,et al.  Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries , 2003 .

[119]  J. Dahn,et al.  Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries , 2005 .

[120]  Ping He,et al.  Olivine LiFePO4: development and future , 2011 .

[121]  Qingsong Wang,et al.  Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries , 2006 .

[122]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[123]  J. Selman,et al.  Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications , 2002 .

[124]  J. Yamaki,et al.  TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries , 2006 .

[125]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[126]  Qingsong Wang,et al.  Effects of solvents and salt on the thermal stability of charged LiCoO2 , 2009 .

[127]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[128]  D. Aurbach,et al.  Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems , 1997 .

[129]  J. Dahn,et al.  Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells , 2001 .

[130]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[131]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[132]  Jaephil Cho,et al.  3-Chloroanisole for overcharge protection of a Li-ion cell , 2007 .

[133]  Seung M. Oh,et al.  Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li / Li x Mn2 O 4 Rechargeable Cells , 1997 .

[134]  Qingsong Wang,et al.  Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteries , 2005 .

[135]  M. Taggougui,et al.  2,5-Difluoro-1,4-dimethoxybenzene for overcharge protection of secondary lithium batteries , 2007 .

[136]  Ahmad Pesaran,et al.  Thermal/electrical modeling for abuse‐tolerant design of lithium ion modules , 2010 .

[137]  Xian-ming Wang,et al.  High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells , 2006 .

[138]  D. Wheeler,et al.  Modeling of lithium-ion batteries , 2003 .

[139]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[140]  J. Dahn,et al.  Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte , 1999 .

[141]  P. Butler,et al.  Lithium battery thermal models , 2002 .

[142]  G. Graff,et al.  Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries , 2011 .

[143]  P. Ramadass,et al.  Analysis of internal short-circuit in a lithium ion cell , 2009 .

[144]  J. Yamaki,et al.  Thermal Behavior of Charged Graphite and Li x CoO2 in Electrolytes Containing Alkyl Phosphate for Lithium-Ion Cells , 2009 .

[145]  Rachel E. Gerver,et al.  Three-Dimensional Modeling of Electrochemical Performance and Heat Generation of Lithium-Ion Batteries in Tabbed Planar Configurations , 2011 .

[146]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[147]  J. Selman,et al.  Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution , 2008 .

[148]  Qingsong Wang,et al.  Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive , 2010 .

[149]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[150]  J. Dahn,et al.  Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2 , 2004 .

[151]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[152]  Ralph E. White,et al.  Influence of Some Design Variables on the Thermal Behavior of a Lithium‐Ion Cell , 1999 .

[153]  Philippe Poizot,et al.  Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices , 2011 .

[154]  Huakun Liu,et al.  Studies on film formation on cathodes using pyrazole derivatives as electrolyte additives in the Li-ion battery , 2009 .

[155]  Stéphan Astier,et al.  Dynamic energy model of a lithium-ion battery , 2010, Math. Comput. Simul..

[156]  Kang Xu,et al.  Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: I. Physical and Electrochemical Properties , 2003 .

[157]  A. S. Vianna,et al.  Simulation of a thermal battery using Phoenics , 2008 .

[158]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[159]  Guanjie Li,et al.  Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery , 2008 .

[160]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[161]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[162]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[163]  K. Amine,et al.  Flame-retardant additives for lithium-ion batteries , 2003 .

[164]  Kang Xu,et al.  Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: II. Performance in Cell , 2003 .

[165]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[166]  Farschad Torabi,et al.  Study of Thermal-Runaway in Batteries I. Theoretical Study and Formulation , 2011 .

[167]  S. Moon,et al.  Diphenyloctyl phosphate and tris(2,2,2-trifluoroethyl) phosphite as flame-retardant additives for Li-ion cell electrolytes at elevated temperature , 2008 .

[168]  Xiao‐Guang Sun,et al.  Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries , 2010 .

[169]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[170]  Seung-wook Eom,et al.  Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test , 2008 .

[171]  Roger A. Dougal,et al.  Dynamic lithium-ion battery model for system simulation , 2002 .

[172]  D. Jeon,et al.  Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .

[173]  G. Nagasubramanian,et al.  Electrical and electrochemical performance characteristics of large capacity lithium-ion cells , 1999 .

[174]  Hui Yang,et al.  Dynamic TGA–FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell , 2007 .

[175]  E. Roth,et al.  Simulation of abuse tolerance of lithium-ion battery packs , 2007 .

[176]  H. Bang,et al.  Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries , 2009 .

[177]  Chi-Chang Hu,et al.  The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries , 2008 .

[178]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[179]  Qingsong Wang,et al.  4-Isopropyl Phenyl Diphenyl Phosphate as Flame-Retardant Additive for Lithium-Ion Battery Electrolyte , 2005 .

[180]  H. Ota,et al.  Effect of cyclic phosphate additive in non-flammable electrolyte , 2003 .

[181]  Qingsong Wang,et al.  Catastrophe analysis of cylindrical lithium ion battery , 2010 .

[182]  J. Yamaki,et al.  A consideration of lithium cell safety , 1999 .

[183]  Taehyun Shim,et al.  Novel Predictive Electric Li-Ion Battery Model Incorporating Thermal and Rate Factor Effects , 2011, IEEE Transactions on Vehicular Technology.

[184]  Jaeshin Yi,et al.  Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature , 2011 .

[185]  M. Verbrugge Three‐dimensionai temperature and current distribution in a battery module , 1995 .

[186]  Stephen Yurkovich,et al.  Electro-thermal battery model identification for automotive applications , 2011 .

[187]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[188]  Mo-hua Yang,et al.  Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries , 2007 .

[189]  Qingsong Wang,et al.  Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive , 2009 .

[190]  R. Mahamud,et al.  Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity , 2011 .

[191]  Haiyan Wang,et al.  Thermal Behavior Investigation of LiNi1/3Co1/3Mn1/3O2‐Based Li‐ion Battery under Overcharged Test , 2011 .

[192]  Hyeong-Jin Kim,et al.  Co-Use of Cyclohexyl Benzene and Biphenyl for Overcharge Protection of Lithium-Ion Batteries , 2006 .

[193]  Dmitry Belov,et al.  Failure mechanism of Li-ion battery at overcharge conditions , 2008 .

[194]  Ralph E. White,et al.  Modeling Heat Conduction in Spiral Geometries , 2003 .

[195]  S. Kim,et al.  A study on the behavior of a cylindrical type Li‐Ion secondary battery under abnormal conditions , 2010 .

[196]  Xiongwen Zhang Thermal analysis of a cylindrical lithium-ion battery , 2011 .

[197]  Yuliang Cao,et al.  Temperature-sensitive cathode materials for safer lithium-ion batteries , 2011 .

[198]  Yuichi Sato,et al.  Overcharge reaction of lithium-ion batteries , 2005 .

[199]  M. Egashira,et al.  Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries , 2006 .

[200]  J. Dahn,et al.  Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells , 2007 .

[201]  B. Lucht,et al.  Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes , 2004 .

[202]  Zonghai Chen,et al.  Degradation pathway of 2,5-di-tert-butyl-1,4-dimethoxybenzene at high potential ☆ , 2007 .

[203]  S. Moon,et al.  Effect of vinyl acetate plus vinylene carbonate and vinyl ethylene carbonate plus biphenyl as electrolyte additives on the electrochemical performance of Li-ion batteries , 2007 .

[204]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[205]  W. Hong,et al.  Modification of LiCoO2 by surface coating with MgO/TiO2/SiO2 for high-performance lithium-ion battery , 2006 .

[206]  Hu Jian,et al.  Wet-laid non-woven fabric for separator of lithium-ion battery , 2009 .

[207]  J. Yamaki,et al.  Lithium Ion Cell Safety , 2000 .