Photomechanical Deformation of Azobenzene-Functionalized Polyimides Synthesized with Bulky Substituents.

Photomechanical effects realized in azobenzene-functionalized polyimides have shown large deformation and an exceptional increase in photogenerated force output. Here, we synthesize and characterize the photomechanical output of a series of linear polyimide materials prepared with a bulky substituent, incorporated via the development of a new bis(azobenzene-diamine) monomer containing a 9,9-diphenylfluorene cardo structure (azoCBODA). All six azoCBODA-containing polyimides are amorphous and exhibit high glass transition temperatures (Tg) ranging from 298 to 358 °C, storage moduli ranging from 2.27 to 3.81 GPa (at 30 °C), and good thermal stability. The magnitude of the photoinduced mechanical response of the azobenzene-functionalized polyimide is correlated to the rotational freedom of the polyimide chains (resulting in extensive segmental mobility) and fractional free volume (FFV > 0.1).

[1]  Matthew L. Smith,et al.  Relaxation Dynamics and Strain Persistency of Azobenzene‐Functionalized Polymers and Actuators , 2017 .

[2]  S. Dai,et al.  A strategy for preparing spirobichroman dianhydride from bisphenol A and its resulting polyimide with low dielectric characteristic , 2017 .

[3]  Mao-Chun Fu,et al.  Poly(phenylene thioether)s with Fluorene-Based Cardo Structure toward High Transparency, High Refractive Index, and Low Birefringence , 2016 .

[4]  Dirk J. Broer,et al.  New insights into photoactivated volume generation boost surface morphing in liquid crystal coatings , 2015, Nature Communications.

[5]  Susanta Banerjee,et al.  Cardo fluorene based semifluorinated co-poly(arylene ether)s: Synthesis, characterization and dielectric properties , 2015 .

[6]  Jeong Jae Wie,et al.  Twists and Turns in Glassy, Liquid Crystalline Polymer Networks , 2015 .

[7]  T. White,et al.  Molecular Engineering of Azobenzene-Functionalized Polyimides to Enhance Both Photomechanical Work and Motion (POSTPRINT) , 2014 .

[8]  Jeong Jae Wie,et al.  Thermally and Optically Fixable Shape Memory in Azobenzene-Functionalized Glassy Liquid Crystalline Polymer Networks , 2014 .

[9]  A. Zhu,et al.  Effect of fluorene groups on the properties of multiblock poly(arylene ether sulfone)s-based anion-exchange membranes. , 2014, ACS applied materials & interfaces.

[10]  Susanta Banerjee,et al.  Effect of introduction of cardo cyclohexylidene moiety on gas transport properties of fluorinated poly(arylene ether)s , 2014 .

[11]  R. Vaia,et al.  Design of polarization-dependent, flexural-torsional deformation in photo responsive liquid crystalline polymer networks. , 2014, Soft matter.

[12]  K. M. Lee,et al.  Impact of Backbone Rigidity on the Photomechanical Response of Glassy, Azobenzene-Functionalized Polyimides , 2014 .

[13]  Matthew L. Smith,et al.  Contactless, photoinitiated snap-through in azobenzene-functionalized polymers , 2013, Proceedings of the National Academy of Sciences.

[14]  T. White,et al.  Topography from Topology: Photoinduced Surface Features Generated in Liquid Crystal Polymer Networks , 2013, Advanced materials.

[15]  R. Vaia,et al.  Photomechanical Response of Pre‐strained Azobenzene‐Functionalized Polyimide Materials , 2013 .

[16]  Laurens T. de Haan,et al.  Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. , 2012, Angewandte Chemie.

[17]  R. Vaia,et al.  Flexural‐Torsional Photomechanical Responses in Azobenzene‐Containing Crosslinked Polyimides , 2012 .

[18]  R. Vaia,et al.  Tailoring the Photomechanical Response of Glassy, Azobenzene-Functionalized Polyimides by Physical Aging , 2012 .

[19]  T. White,et al.  Photochemical Mechanism and Photothermal Considerations in the Mechanical Response of Monodomain, Azobenzene-Functionalized Liquid Crystal Polymer Networks , 2012 .

[20]  G. Heinrich,et al.  Theory of light-induced deformation of azobenzene elastomers: influence of network structure. , 2012, Journal of Chemical Physics.

[21]  K. M. Lee,et al.  Photomechanical bending mechanics of polydomain azobenzene liquid crystal polymer network films , 2012 .

[22]  K. M. Lee,et al.  Autonomous, Hands‐Free Shape Memory in Glassy, Liquid Crystalline Polymer Networks , 2012, Advanced materials.

[23]  K. M. Lee,et al.  trans–cis and trans–cis–trans Microstructure Evolution of Azobenzene Liquid‐Crystal Polymer Networks , 2012 .

[24]  K. M. Lee,et al.  Photomechanical mechanism and structure-property considerations in the generation of photomechanical work in glassy, azobenzene liquid crystal polymer networks , 2012 .

[25]  K. Miyatake,et al.  Fluorene-containing cardo polymers as ion conductive membranes for fuel cells , 2011 .

[26]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[27]  R. Vaia,et al.  Photomechanical Response of Glassy Azobenzene Polyimide Networks , 2011 .

[28]  R. Vaia,et al.  Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks , 2011 .

[29]  Richard A. Vaia,et al.  Relationship between the Photomechanical Response and the Thermomechanical Properties of Azobenzene Liquid Crystalline Polymer Networks , 2010 .

[30]  Nelson V. Tabiryan,et al.  Liquid crystalline polymer cantilever oscillators fueled by light , 2010 .

[31]  H. Hayashi,et al.  9,9-Diarylfluorene Moiety Incorporated into Polymer Main Chains: An Essential Skeleton Exhibiting Prominent Physical, Chemical, and Optical Properties , 2010 .

[32]  G. Robertson,et al.  Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers† , 2009 .

[33]  G. Heinrich,et al.  Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers. , 2009, The journal of physical chemistry. B.

[34]  R. Vaia,et al.  Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers , 2009 .

[35]  Timothy J White,et al.  Bidirectional photoresponse of surface pretreated azobenzene liquid crystal polymer networks. , 2009, Optics express.

[36]  M. Warner,et al.  Polarization dependence of optically driven polydomain elastomer mechanics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[38]  Cees W. M. Bastiaansen,et al.  Bending Dynamics and Directionality Reversal in Liquid Crystal Network Photoactuators , 2008 .

[39]  R. Vaia,et al.  A high frequency photodriven polymer oscillator , 2008 .

[40]  M. Warner,et al.  Bleaching and stimulated recovery of dyes and of photocantilevers. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  M. Warner,et al.  Linear and nonlinear photoinduced deformations of cantilevers. , 2007, Physical review letters.

[42]  S. Serak,et al.  Polymer film with optically controlled form and actuation. , 2005, Optics express.

[43]  L Mahadevan,et al.  Photoinduced deformations of beams, plates, and films. , 2004, Physical review letters.

[44]  Michael H Abraham,et al.  Fast calculation of van der Waals volume as a sum of atomic and bond contributions and its application to drug compounds. , 2003, The Journal of organic chemistry.

[45]  C. Bas,et al.  On the dynamic mechanical behavior of polyimides based on aromatic and alicyclic dianhydrides , 2003 .

[46]  Paul Rochon,et al.  Photoinduced motions in azo-containing polymers. , 2002, Chemical reviews.

[47]  Shingo Kazama,et al.  Carbon dioxide and nitrogen transport properties of bis(phenyl)fluorene-based cardo polymer membranes , 2002 .

[48]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[49]  Kil‐Yeong Choi,et al.  Soluble polyimides containing alicyclic structures , 1999 .

[50]  L. Billon,et al.  Chemical structure/mechanical properties of para-aminostyrene (PAS)-terminated telechelic polyimides , 1998 .

[51]  F. A. Ruiz-Treviño,et al.  Modification of polysulfone gas separation membranes by additives , 1997 .

[52]  P. Tékély,et al.  Molecular motion of polycarbonate in the vicinity of −60°C as revealed by broad-line n.m.r., magic angle spinning n.m.r. and conformational analysis , 1983 .

[53]  Claus D. Eisenbach,et al.  Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect , 1980 .

[54]  C. Eisenbach Relation between Photochromism of Chromophores and Free Volume Theory in Bulk Polymers , 1980 .

[55]  L. Matějka,et al.  The thermal effect in the photomechanical conversion of a photochromic polymer , 1979 .

[56]  C. Eisenbach Photochrome prozesse zur untersuchung der kettenbeweglichkeit in polymeren , 1979 .

[57]  J. K. Gillham,et al.  Polyimides: Effect of molecular structure and cure on thermomechanical behavior , 1973 .

[58]  F. Agolini Synthesis and Properties of Azoaromatic Polymers , 1970 .

[59]  R. Lovrien,et al.  The photoviscosity effect. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Bondi van der Waals Volumes and Radii , 1964 .

[61]  Robert Simha,et al.  On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers , 1962 .

[62]  Nirmal K. Viswanathan,et al.  Surface relief structures on azo polymer films , 1999 .

[63]  A. Yee,et al.  Molecular structure effects on the dynamic mechanical spectra of polycarbonates , 1981 .