Hydrophilic trans‐Cyclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling

Introduction of bioorthogonal functionalities (e.g., trans‐cyclooctene‐TCO) into a protein of interest by site‐specific genetic encoding of non‐canonical amino acids (ncAAs) creates uniquely targetable platforms for fluorescent labeling schemes in combination with tetrazine‐functionalized dyes. However, fluorescent labeling of an intracellular protein is usually compromised by high background, arising from the hydrophobicity of ncAAs; this is typically compensated for by hours‐long washout to remove excess ncAAs from the cellular interior. To overcome these problems, we designed, synthesized, and tested new, hydrophilic TCO‐ncAAs. One derivative, DOTCO‐lysine was genetically incorporated into proteins with good yield. The increased hydrophilicity shortened the excess ncAA washout time from hours to minutes, thus permitting rapid labeling and subsequent fluorescence microscopy.

[1]  Jason W. Chin,et al.  Selective, rapid and optically switchable regulation of protein function in live mammalian cells. , 2015, Nature chemistry.

[2]  Jun Hee Kang,et al.  Labeling proteins on live mammalian cells using click chemistry , 2015, Nature Protocols.

[3]  E. Lemke,et al.  The Exploding Genetic Code , 2014, Chembiochem : a European journal of chemical biology.

[4]  M. Binder,et al.  Sensing of HIV-1 Infection in Tzm-bl Cells with Reconstituted Expression of STING , 2015, Journal of Virology.

[5]  J. Chin,et al.  Genetic Code Expansion Enables Live-Cell and Super-Resolution Imaging of Site-Specifically Labeled Cellular Proteins , 2015, Journal of the American Chemical Society.

[6]  G. B. Cserép,et al.  Bioorthogonal fluorescent labels: a review on combined forces , 2015, Methods and applications in fluorescence.

[7]  Stephen Wallace,et al.  Conformationally Strained trans-Cyclooctene with Improved Stability and Excellent Reactivity in Tetrazine Ligation. , 2014, Chemical science.

[8]  J. Judkins,et al.  Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging , 2015, Journal of the American Chemical Society.

[9]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[10]  Carsten Schultz,et al.  Genetisch kodierte kupferfreie Klick‐Chemie , 2011 .

[11]  P. Bankhead,et al.  HIV-1 Nef Limits Communication between Linker of Activated T Cells and SLP-76 To Reduce Formation of SLP-76–Signaling Microclusters following TCR Stimulation , 2012, The Journal of Immunology.

[12]  Frauke Gräter,et al.  Origin of Orthogonality of Strain-Promoted Click Reactions , 2015, Chemistry.

[13]  C. Slugovc,et al.  Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. , 2013, Chemical Society reviews.

[14]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[15]  C. Bertozzi,et al.  A Hydrophilic Azacyclooctyne for Cu-Free Click Chemistry , 2008, Organic letters.

[16]  A. Schreiber,et al.  Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments. , 2015, Nature materials.

[17]  I. Alabugin,et al.  Moderating strain without sacrificing reactivity: design of fast and tunable noncatalyzed alkyne-azide cycloadditions via stereoelectronically controlled transition state stabilization. , 2013, Journal of the American Chemical Society.

[18]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[19]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[20]  H. Werner,et al.  Minireview: nuclear insulin and insulin-like growth factor-1 receptors: a novel paradigm in signal transduction. , 2013, Endocrinology.

[21]  S. Tatulian Structural Dynamics of Insulin Receptor and Transmembrane Signaling. , 2015, Biochemistry.

[22]  Carsten Schultz,et al.  Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. , 2014, Angewandte Chemie.

[23]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[24]  Edward A Lemke,et al.  Genetic code expansion enabled site-specific dual-color protein labeling: superresolution microscopy and beyond. , 2015, Current opinion in chemical biology.

[25]  Jeffery M. Tharp,et al.  Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. , 2014, Biochimica et biophysica acta.

[26]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[27]  H. Jendralla (5RS, 7RS)‐7‐Methoxy‐1,3‐dioxacyclooct‐5(E)‐en Synthese eines stabilen Bishetero‐trans‐cyclooctens; ein neues heterocyclisches System , 1982 .

[28]  Mihály Kállay,et al.  A non-fluorinated monobenzocyclooctyne for rapid copper-free click reactions. , 2012, Chemistry.

[29]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[30]  S. Hell,et al.  Super-resolution Microscopy of Clickable Amino Acids Reveals the Effects of Fluorescent Protein Tagging on Protein Assemblies. , 2015, ACS nano.

[31]  Ronald T. Raines,et al.  Bright Building Blocks for Chemical Biology , 2014, ACS chemical biology.

[32]  Carlo P Ramil,et al.  Bioorthogonal chemistry: strategies and recent developments. , 2013, Chemical communications.

[33]  S. Meloche,et al.  Rapid Turnover of Extracellular Signal-Regulated Kinase 3 by the Ubiquitin-Proteasome Pathway Defines a Novel Paradigm of Mitogen-Activated Protein Kinase Regulation during Cellular Differentiation , 2003, Molecular and Cellular Biology.

[34]  Uri Alon,et al.  Proteome Half-Life Dynamics in Living Human Cells , 2011, Science.

[35]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[36]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[37]  Haoxing Wu,et al.  In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes. , 2014, Angewandte Chemie.

[38]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.

[39]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[40]  G. Koretzky,et al.  SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond , 2006, Nature Reviews Immunology.

[41]  Juyeon Jung,et al.  Chemical biology-based approaches on fluorescent labeling of proteins in live cells. , 2013, Molecular bioSystems.

[42]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[43]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[44]  H. Jendralla The influence of endocyclic oxygen atoms on the cycloaddition reactivity of trans-cyclo-octene , 1983 .

[45]  Carsten Schultz,et al.  Schnelle, zweifarbige Proteinmarkierung an lebenden Zellen für die hochauflösende Mikroskopie , 2014 .

[46]  Ryohei Ishii,et al.  Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. , 2008, Chemistry & biology.

[47]  M. Cazzola,et al.  Transferrin saturation, plasma iron turnover, and transferrin uptake in normal humans. , 1985, Blood.

[48]  E. Lemke,et al.  Genetic Encoding of a Bicyclo[6.1.0]nonyne‐Charged Amino Acid Enables Fast Cellular Protein Imaging by Metal‐Free Ligation , 2012, Chembiochem : a European journal of chemical biology.

[49]  Mihály Kállay,et al.  New generation of bioorthogonally applicable fluorogenic dyes with visible excitations and large Stokes shifts. , 2014, Bioconjugate chemistry.

[50]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[51]  Ivana Nikić,et al.  Highly Stable trans-Cyclooctene Amino Acids for Live-Cell Labeling. , 2015, Chemistry.