Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review

Unlike the revolutionary advances in the anodes of lithium-ion batteries from Li intercalation materials to Li alloy and/or conversion reaction materials, the development of the cathode is still dominated by the Li intercalation compounds. Transition metal ions are essential in these cathodes as the rapid redox reaction centers, and one of the biggest challenges for the TM-based cathodes is the capacity and power fading especially at an elevated temperature, which is directly associated with the dissolution–migration–deposition (DMD) process of TMs from the cathode materials. This process not only alters the surface structure of the cathode materials, but more importantly, changes the SEI composition at the anode side. There is no doubt that the TM-DMD issue should be addressed thoroughly to unlock the potential of these compounds to enable a prolonged battery lifetime. This review article mainly focuses on research activities with regard to the DMD process in TM-based cathode materials. In the first four sections, we choose Mn-based cathodes as an example to discuss how Mn DMD relates to the capacity fade of the cell, and what possible approaches might suppress the DMD process by modification of the electrode or electrolyte. In the fifth section, we discuss the TM DMD process in Ni-, Co-, Fe- and V-containing cathode materials. This article reviews the frontier electrochemical research on TM-based cathodes and summarizes the progress and challenges, thereby helping to advance future R&D of LIBs.

[1]  Haishen Song,et al.  Capacity fade of LiFePO4/graphite cell at elevated temperature , 2013, Journal of Solid State Electrochemistry.

[2]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[3]  Kenneth A. Walz,et al.  Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings , 2010 .

[4]  Shinichi Komaba,et al.  Electrochemical Behavior of Graphite Electrode for Lithium Ion Batteries in Mn and Co Additive Electrolytes , 2000 .

[5]  J. Xie,et al.  Synthesis and electrochemical performance of YF3-coated LiMn2O4 cathode materials for Li-ion batteries , 2011 .

[6]  B. Dunn,et al.  Synthesis and Electrochemical Properties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process , 2004 .

[7]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[8]  Ying Bai,et al.  Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating , 2011 .

[9]  D. Aurbach,et al.  Acid-Scavenging Separators: A Novel Route for Improving Li-Ion Batteries’ Durability , 2017 .

[10]  James A. Gilbert,et al.  Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells , 2017 .

[11]  Doron Aurbach,et al.  LiMn(0.8)Fe(0.2)PO(4): an advanced cathode material for rechargeable lithium batteries. , 2009, Angewandte Chemie.

[12]  Zhaolin Liu,et al.  Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries , 1999 .

[13]  Dong-Qiang Liu,et al.  Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries , 2007 .

[14]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[15]  Ryoji Marubayashi,et al.  Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries , 2002 .

[16]  Itaru Honma,et al.  Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. , 2009, Nano letters.

[17]  M. Balasubramanian,et al.  Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Linda F. Nazar,et al.  Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries , 2007 .

[19]  A. Manthiram,et al.  Understanding the effects of cationic and anionic substitutions in spinel cathodes of lithium-ion batteries , 2013 .

[20]  F. G. Keyes,et al.  THE POTENTIAL OF THE LITHIUM ELECTRODE. , 1913 .

[21]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[22]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[23]  Xingcheng Xiao,et al.  Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[24]  R. Benedek,et al.  Reaction Energy for LiMn2O4 Spinel Dissolution in Acid , 2006 .

[25]  P. Stroeve,et al.  Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4 , 2004 .

[26]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[27]  T. Abe,et al.  Effects of Electrolyte Additives on the Suppression of Mn Deposition on Edge Plane Graphite for Lithium-Ion Batteries , 2013 .

[28]  Shinichi Komaba,et al.  Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C ∕ LiMn2O4 Li-Ion Cells , 2005 .

[29]  Tongchao Liu,et al.  Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2. , 2016, Journal of the American Chemical Society.

[30]  Xiangming He,et al.  Electrochemical performance of SrF2-coated LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries , 2009 .

[31]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[32]  T. Bučko,et al.  Simulation of Aqueous Dissolution of Lithium Manganate Spinel from First Principles , 2012 .

[33]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[34]  K. Amine,et al.  Tuning the Mn Deposition on the Anode to Improve the Cycle Performance of the Mn‐Based Lithium Ion Battery , 2016 .

[35]  G. Graff,et al.  High‐Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+ Concentration and Site Disorder , 2012, Advanced materials.

[36]  Seong Ihl Woo,et al.  Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by Liquid Source Misted Chemical Deposition (LSMCD) technique , 2003 .

[37]  A. Manthiram,et al.  Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes , 2006 .

[38]  Weifeng Zhang,et al.  Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries , 2013 .

[39]  S. Komaba,et al.  Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries , 2002 .

[40]  P. Bruce,et al.  A Stoichiometric Nano-LiMn2O4 Spinel Electrode Exhibiting High Power and Stable Cycling , 2008 .

[41]  Dominique Guyomard,et al.  Self-discharge of LiMn2O4/C Li-ion cells in their discharged state: Understanding by means of three-electrode measurements , 1998 .

[42]  H. Gasteiger,et al.  Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy , 2016 .

[43]  Yasuko Terada,et al.  Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique , 2001 .

[44]  John O. Thomas,et al.  Thermal stability of LiFePO4-based cathodes , 1999 .

[45]  Wei Cheng,et al.  Design of vanadium oxide core–shell nanoplatelets for lithium ion storage , 2015 .

[46]  Xingcheng Xiao,et al.  Atomic layer coating to mitigate capacity fading associated with manganese dissolution in lithium ion batteries , 2013 .

[47]  Kazuhisa Tamura,et al.  Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. , 2010, Journal of the American Chemical Society.

[48]  M. Yoshio,et al.  Preparation and properties of LiCoyMnxNi1−x−yO2 as a cathode for lithium ion batteries , 2000 .

[49]  Yong Yang,et al.  Electrochemical Performance and Surface Properties of Bare and TiO2-Coated Cathode Materials in Lithium-Ion Batteries , 2004 .

[50]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[51]  D. Abraham,et al.  Manganese in Graphite Anode and Capacity Fade in Li Ion Batteries , 2014 .

[52]  Ilias Belharouak,et al.  Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications , 2004 .

[53]  P. Novák,et al.  Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials , 1998 .

[54]  B. V. R. Chowdari,et al.  Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries , 2002 .

[55]  D. Aurbach,et al.  More on the performance of LiFePO4 electrodes—The effect of synthesis route, solution composition, aging, and temperature , 2007 .

[56]  Anne C. Dillon,et al.  Layered vanadium and molybdenum oxides: batteries and electrochromics , 2009 .

[57]  Zhaolin Liu,et al.  Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO2 , 2002 .

[58]  J. Tarascon,et al.  Mechanism for Limited 55°C Storage Performance of Li1.05Mn1.95 O 4 Electrodes , 1999 .

[59]  Tingfeng Yi,et al.  Erratum to: A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery , 2009 .

[60]  Christopher S. Johnson,et al.  Stabilized alpha-MnO2 electrodes for rechargeable 3 V lithium batteries , 1997 .

[61]  Jaephil Cho,et al.  PVP-Assisted ZrO2 coating on LiMn2O4 spinel cathode nanoparticles prepared by MnO2 nanowire templates , 2008 .

[62]  T. Abe,et al.  Influence of Manganese Dissolution on the Degradation of Surface Films on Edge Plane Graphite Negative-Electrodes in Lithium-Ion Batteries , 2012 .

[63]  J. Prakash,et al.  The Effect of ZnO Coating on Electrochemical Cycling Behavior of Spinel LiMn2 O 4 Cathode Materials at Elevated Temperature , 2003 .

[64]  G. Amatucci,et al.  Electrochemical Performance of Acid-Treated Nanostructured LiMn1.5Ni0.5O4 − δ Spinel at Elevated Temperature , 2010 .

[65]  D. Aurbach,et al.  Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques , 1999 .

[66]  M. Stanley Whittingham,et al.  The Role of Ternary Phases in Cathode Reactions , 1976 .

[67]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[68]  Seung M. Oh,et al.  Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li / Li x Mn2 O 4 Rechargeable Cells , 1997 .

[69]  Lisa C. Klein,et al.  Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries , 1996 .

[70]  Shinichi Komaba,et al.  Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries , 2003 .

[71]  C. Yoon,et al.  Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide , 2014, Scientific Reports.

[72]  Jai-Young Lee,et al.  Electrochemical Properties of LiCoO2-Coated LiMn2O4 Prepared by Solution-Based Chemical Process , 2001 .

[73]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[74]  A. Momchilov,et al.  Rechargeable lithium battery with spinel-related MnO2 II. Optimization of the LiMn2O4 synthesis conditions , 1993 .

[75]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[76]  Jun Lu,et al.  Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems , 2013, Nature Communications.

[77]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[78]  N. Choi,et al.  Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C , 2010 .

[79]  D. Aurbach,et al.  Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells , 2006 .

[80]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[81]  J. Tarascon,et al.  Origin of self-discharge mechanism in LiMn2O4-based Li-ion cells: A chemical and electrochemical approach , 1997 .

[82]  Daniel P. Abraham,et al.  Microscopy and Spectroscopy of Lithium Nickel Oxide-Based Particles Used in High Power Lithium-Ion Cells , 2003 .

[83]  D. Aurbach,et al.  On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions. , 2017, Journal of the American Chemical Society.

[84]  V. Manev,et al.  LiMn2O4 for 4 V lithium-ion batteries , 1995 .

[85]  M. Wakihara,et al.  Electrochemical properties of LiM1/6Mn11/6O4 (M = Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method , 2002 .

[86]  M. Yoshio,et al.  Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2-xO4) for lithium secondary battery , 2001 .

[87]  Yongchao Huang,et al.  Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries. , 2016, ACS applied materials & interfaces.

[88]  L. Gu,et al.  Surface Structure Evolution of LiMn2O4 Cathode Material upon Charge/Discharge , 2014 .

[89]  C. F. Ng,et al.  A V2O5/Conductive‐Polymer Core/Shell Nanobelt Array on Three‐Dimensional Graphite Foam: A High‐Rate, Ultrastable, and Freestanding Cathode for Lithium‐Ion Batteries , 2014, Advanced materials.

[90]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[91]  H. Gasteiger,et al.  Aging Analysis of Graphite/LiNi1/3Mn1/3Co1/3O2 Cells Using XRD, PGAA, and AC Impedance , 2015 .

[92]  Yang-Kook Sun,et al.  Improved Electrochemical Cycling Behavior of ZnO -Coated Li1.05Al0.1Mn1.85O3.95F0.05 Spinel at 55°C , 2006 .

[93]  D. Song The spinel phases LiAlyMn2−yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)1/6Mn11/6O4 (M=Cr, Co) as the cathode for rechargeable lithium batteries , 1999 .

[94]  Dong-Qiang Liu,et al.  The elevated temperature performance of LiMn2O4 coated with Li4Ti5O12 for lithium ion battery , 2007 .

[95]  Sang-Cheol Han,et al.  The elevated temperature performance of LiMn2O4 coated with LiNi1−XCoXO2 (X = 0.2 and 1) , 2002 .

[96]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[97]  Daniel P. Abraham,et al.  Evidence of Transition-Metal Accumulation on Aged Graphite Anodes by SIMS , 2008 .

[98]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[99]  A. D. Kock,et al.  The versatility of MnO2 for lithium battery applications , 1993 .

[100]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[101]  Doron Aurbach,et al.  Cycling and storage performance at elevated temperatures of LiNi0.5Mn1.5O4 positive electrodes for advanced 5 V Li-ion batteries , 2004 .

[102]  Chun-hua Chen,et al.  Three-dimensional porous Fe0.1V2O5.15 thin film as a cathode material for lithium ion batteries , 2012 .

[103]  Xiangyun Song,et al.  Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells , 2012 .

[104]  Kenneth A. Walz,et al.  The Electrochemical Stability of Spinel Electrodes Coated with ZrO2 , Al2 O 3 , and SiO2 from Colloidal Suspensions , 2004 .

[105]  C. Delacourt,et al.  Effect of Manganese Contamination on the Solid-Electrolyte-Interphase Properties in Li-Ion Batteries , 2013 .

[106]  Ann Marie Sastry,et al.  Numerical Simulation of the Effect of the Dissolution of LiMn2O4 Particles on Li-Ion Battery Performance , 2011 .

[107]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[108]  Dean J. Miller,et al.  Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach , 2014, Nature Communications.

[109]  Á. Caballero,et al.  Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer‐Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries , 2006 .

[110]  Takao Inoue,et al.  A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80°C, and the suppressing substances of its fading , 2001 .

[111]  John T. Vaughey,et al.  ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries , 2003 .

[112]  A. Miyamoto,et al.  Structural Properties of LixMn2O4 as Investigated by Molecular Dynamics and Density Functional Theory , 2000 .

[113]  Zhanxu Yang,et al.  The effect of a Co―Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material , 2009 .

[114]  E. Uchaker,et al.  Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries , 2012 .

[115]  Yunlong Zhao,et al.  Topotactically synthesized ultralong LiV 3 O 8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries , 2012 .

[116]  Kang Xu,et al.  Alkaline composite film as a separator for rechargeable lithium batteries , 2003 .

[117]  Jean-Marie Tarascon,et al.  Materials' effects on the elevated and room temperature performance of CLiMn2O4 Li-ion batteries , 1997 .

[118]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[119]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .

[120]  Masahiro Kinoshita,et al.  Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges) , 2014 .

[121]  J. Tarascon,et al.  Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance , 1997 .

[122]  K. Striebel,et al.  Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments , 2003 .

[123]  Doron Aurbach,et al.  The Effect of ZnO and MgO Coatings by a Sono-Chemical Method, on the Stability of LiMn1.5Ni0.5O4 as a Cathode Material for 5 V Li-Ion Batteries , 2012 .

[124]  R. Li,et al.  Surface aging at olivine LiFePO4: a direct visual observation of iron dissolution and the protection role of nano-carbon coating , 2013 .

[125]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[126]  Effect of Low-Temperature Fluorine Doping on the Properties of Spinel LiMn2 − 2y Li y M y O4 − η F η (M = Fe , Co, and Zn) Cathodes , 2009 .