Further Results on Approximating Nonconvex Quadratic Optimization by Semidefinite Programming Relaxation

We study approximation bounds for the semidefinite programming (SDP) relaxation of quadratically constrained quadratic optimization: $\min f^0(x)$ subject to $f^k(x)\le 0$, $k=1,\dots,m$, where fk(x)=xTAkx+(bk)Tx+ck. In the special case of ellipsoid constraints with interior feasible solution at 0, we show that the SDP relaxation, coupled with a rank-1 decomposition result of Sturm and Zhang [Math. Oper. Res., to appear], yields a feasible solution of the original problem with objective value at most $(1-\gamma)^2/(\sqrt{m}+\gamma)^2$ times the optimal objective value, where $\gamma=\sqrt{\smash[b]{\max_k f^k(0)+1}}$. For the single trust-region problem corresponding to m=1, this yields an exact optimal solution. In the general case, we extend some bounds derived by Nesterov [Optim. Methods Softw., 9 (1998), pp. 141--160; working paper, CORE, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium, 1998], Ye [Math. Program., 84 (1999), pp. 219--226], and Nesterov, Wolkowicz, and Ye [in Handbook of Semidefinite Programming, H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp. 360--419] for the special case where $A^k$ is diagonal and bk=0 for k=1, ..., m. We also discuss the generation of approximate solutions with high probability.

[1]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[2]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[3]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[4]  Tamás Terlaky,et al.  On maximization of quadratic form over intersection of ellipsoids with common center , 1999, Math. Program..

[5]  Boris Polyak Convexity of Quadratic Transformations and Its Use in Control and Optimization , 1998 .

[6]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[7]  Yinyu Ye,et al.  Approximating quadratic programming with bound and quadratic constraints , 1999, Math. Program..

[8]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[9]  Y. Ye,et al.  Semidefinite programming relaxations of nonconvex quadratic optimization , 2000 .

[10]  Ya-Xiang Yuan,et al.  Optimality Conditions for the Minimization of a Quadratic with Two Quadratic Constraints , 1997, SIAM J. Optim..

[11]  Alexander I. Barvinok Feasibility testing for systems of real quadratic equations , 1993, Discret. Comput. Geom..

[12]  Zhi-Quan Luo,et al.  Approximation Algorithms for Quadratic Programming , 1998, J. Comb. Optim..

[13]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[14]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[15]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[16]  Shuzhong Zhang,et al.  New Results on Quadratic Minimization , 2003, SIAM J. Optim..

[17]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[18]  Yinyu Ye,et al.  Approximating Global Quadratic Optimization with Convex Quadratic Constraints , 1999, J. Glob. Optim..

[19]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[20]  Shuzhong Zhang,et al.  Quadratic maximization and semidefinite relaxation , 2000, Math. Program..

[21]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[22]  Y. Nesterov Global quadratic optimization via conic relaxation , 1998 .

[23]  Yurii Nesterov Global quadratic optimization on the sets with simplex structure , 1999 .

[24]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..