Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives

[1]  Dennis J. McFarland,et al.  Brain–computer interfaces for communication and control , 2002, Clinical Neurophysiology.

[2]  Xiaorong Gao,et al.  An independent brain-computer interface based on covert shifts of non-spatial visual attention , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  Yijun Wang,et al.  VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier] , 2009, IEEE Computational Intelligence Magazine.

[4]  Anthony M Norcia,et al.  Attentive and pre-attentive aspects of figural processing. , 2009, Journal of vision.

[5]  Xiaorong Gao,et al.  An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method , 2009, Journal of neural engineering.

[6]  G. Garcia Molina,et al.  Detection of high frequency steady state visual evoked potentials for Brain-computer interfaces , 2009, 2009 17th European Signal Processing Conference.

[7]  Andreas Keil,et al.  Prolonged reduction of electrocortical activity predicts correct performance during rapid serial visual processing. , 2009, Psychophysiology.

[8]  Ramaswamy Palaniappan,et al.  Augmenting a SSVEP BCI through single cycle analysis and phase weighting , 2009, 2009 4th International IEEE/EMBS Conference on Neural Engineering.

[9]  Giuseppe Andreoni,et al.  A Robust and Self-Paced BCI System Based on a Four Class SSVEP Paradigm: Algorithms and Protocols for a High-Transfer-Rate Direct Brain Communication , 2009, Comput. Intell. Neurosci..

[10]  Masaaki Nishida,et al.  Differential visually-induced gamma-oscillations in human cerebral cortex , 2009, NeuroImage.

[11]  Andrew Pipingas,et al.  A steady state visually evoked potential investigation of memory and ageing , 2009, Brain and Cognition.

[12]  Andrzej Cichocki,et al.  On the synchrony of steady state visual evoked potentials and oscillatory burst events , 2009, Cognitive Neurodynamics.

[13]  R. Srinivasan,et al.  Nonlinear SSVEP responses are sensitive to the perceptual binding of visual hemifields during conventional ‘eye’ rivalry and interocular ‘percept’ rivalry , 2009, Brain Research.

[14]  Andrzej Cichocki,et al.  Steady State Visual Evoked Potentials in the Delta Range (0.5-5 Hz) , 2008, ICONIP.

[15]  Gamma frequency SSVEP components differentiate children with febrile seizures from normal controls , 2008, Epilepsia.

[16]  Dezhong Yao,et al.  Stimulator selection in SSVEP-based BCI. , 2008, Medical engineering & physics.

[17]  Yijun Wang,et al.  Brain-Computer Interfaces Based on Visual Evoked Potentials , 2008, IEEE Engineering in Medicine and Biology Magazine.

[18]  John J. Foxe,et al.  Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the “C1” Component , 2008, Brain Topography.

[19]  Andrzej Cichocki,et al.  Fast Multi-command SSVEP Brain Machine Interface without Training , 2008, ICANN.

[20]  M. Iwata,et al.  Abnormal visual processing in migraine with aura: A study of steady-state visual evoked potentials , 2008, Journal of the Neurological Sciences.

[21]  Andreas Keil,et al.  Hypofunction of right temporoparietal cortex during emotional arousal in depression. , 2008, Archives of general psychiatry.

[22]  J. Parra,et al.  Non-provocative diagnostics of photosensitivity using visual evoked potentials , 2008, Clinical Neurophysiology.

[23]  Dezhong Yao,et al.  Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs. , 2008, Journal of neural engineering.

[24]  Adriana Berezovsky,et al.  Steady-state sweep visual evoked potential processing denoised by wavelet transform , 2008, SPIE Medical Imaging.

[25]  Barry B. Lee Neural models and physiological reality , 2008, Visual Neuroscience.

[26]  Gernot R. Müller-Putz,et al.  Comparison of DFT and lock-in amplifier features and search for optimal electrode positions in SSVEP-based BCI , 2008, Journal of Neuroscience Methods.

[27]  Justin M. Ales,et al.  Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas , 2008, Electronic Imaging.

[28]  J. Wolpaw,et al.  Towards an independent brain–computer interface using steady state visual evoked potentials , 2008, Clinical Neurophysiology.

[29]  B. Skottun,et al.  Visual Search: Magno- and Parvocellular Systems or Color and Luminance Processes? , 2008, The International journal of neuroscience.

[30]  Gernot R. Müller-Putz,et al.  Control of an Electrical Prosthesis With an SSVEP-Based BCI , 2008, IEEE Transactions on Biomedical Engineering.

[31]  R. Bergholz,et al.  Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function , 2008, Documenta Ophthalmologica.

[32]  W. Klimesch,et al.  Event-related phase reorganization may explain evoked neural dynamics , 2007, Neuroscience & Biobehavioral Reviews.

[33]  A. Keil,et al.  Neural mechanisms of evoked oscillations: Stability and interaction with transient events , 2007, Human brain mapping.

[34]  M. Byczuk,et al.  A Virtual Keypad Based on Alternate Half-Field Stimulated Visual Evoked Potentials , 2007, 2007 International Symposium on Information Technology Convergence (ISITC 2007).

[35]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[36]  Ramesh Srinivasan,et al.  Identification of wave‐like spatial structure in the SSVEP: Comparison of simultaneous EEG and MEG , 2007, Statistics in medicine.

[37]  Febo Cincotti,et al.  Vibrotactile Feedback for Brain-Computer Interface Operation , 2007, Comput. Intell. Neurosci..

[38]  B. Skottun,et al.  Some remarks on the use of visually evoked potentials to measure magnocellular activity , 2007, Clinical Neurophysiology.

[39]  J Artieda,et al.  Topography of cortical activation differs for fundamental and harmonic frequencies of the steady-state visual-evoked responses. An EEG and PET H215O study. , 2007, Cerebral cortex.

[40]  Andrzej Cichocki,et al.  Fully Online Multicommand Brain-Computer Interface with Visual Neurofeedback Using SSVEP Paradigm , 2007, Comput. Intell. Neurosci..

[41]  Xiaorong Gao,et al.  A Human Computer Interface Using SSVEP-Based BCI Technology , 2007, HCI.

[42]  Jonathan R Wolpaw,et al.  Brain–computer interface systems: progress and prospects , 2007, Expert review of medical devices.

[43]  Steven Lemm,et al.  A novel mechanism for evoked responses in the human brain , 2007, The European journal of neuroscience.

[44]  D. Spinelli,et al.  Spatiotemporal analysis of the cortical sources of the steady‐state visual evoked potential , 2007, Human brain mapping.

[45]  Ivan Volosyak,et al.  Multiple Channel Detection of Steady-State Visual Evoked Potentials for Brain-Computer Interfaces , 2007, IEEE Transactions on Biomedical Engineering.

[46]  Reto Meuli,et al.  fMRI responses in medial frontal cortex that depend on the temporal frequency of visual input , 2007, Experimental Brain Research.

[47]  Wilkin Chau,et al.  Rhythmic brain activities related to singing in humans , 2007, NeuroImage.

[48]  Shinsuke Shimojo,et al.  Assessment of connectivity patterns from multivariate time series by partial directed coherence , 2007 .

[49]  Wei Wu,et al.  Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs , 2007, IEEE Transactions on Biomedical Engineering.

[50]  Paul R. Martin,et al.  Geniculocortical relay of blue-off signals in the primate visual system , 2006, Proceedings of the National Academy of Sciences.

[51]  D. Sinclair,et al.  Clinical Significance of Photic Stimulation during Routine EEGs of Adult Patients , 2006, American journal of electroneurodiagnostic technology.

[52]  J. Eggermont,et al.  Auditory Evoked Potentials: Basic Principles and Clinical Application , 2006 .

[53]  Fred Tam,et al.  Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex , 2006, NeuroImage.

[54]  S A Hillyard,et al.  Feature-selective attention enhances color signals in early visual areas of the human brain , 2006, Proceedings of the National Academy of Sciences.

[55]  R N Bryan,et al.  Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex. , 2006, AJNR. American journal of neuroradiology.

[56]  Andreas Keil,et al.  Early cortical facilitation for emotionally arousing targets during the attentional blink , 2006, BMC Biology.

[57]  Kathryn A. Ellis,et al.  Exploring the temporal dynamics of the spatial working memory n-back task using steady state visual evoked potentials (SSVEP) , 2006, NeuroImage.

[58]  K.D. Nielsen,et al.  EEG based BCI-towards a better control. Brain-computer interface research at aalborg university , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[59]  Willy Wong,et al.  The adaptive chirplet transform and visual evoked potentials , 2006, IEEE Transactions on Biomedical Engineering.

[60]  L.J. Trejo,et al.  Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[61]  Ramesh Srinivasan,et al.  MEG phase follows conscious perception during binocular rivalry induced by visual stream segregation. , 2006, Cerebral cortex.

[62]  Louise Hainline,et al.  The Effect of Colored Lenses on the Visual Evoked Response in Children With Visual Stress , 2006, Optometry and vision science : official publication of the American Academy of Optometry.

[63]  Shogo Tanaka,et al.  Characteristics of alpha wave response to flicker stimuli with color alternation , 2006 .

[64]  Andrzej Materka,et al.  Alternate half-field stimulation technique for SSVEP-based brain-computer interfaces , 2006 .

[65]  Ramesh Srinivasan,et al.  Steady-State Visual Evoked Potentials: Distributed Local Sources and Wave-Like Dynamics Are Sensitive to Flicker Frequency , 2006, Brain Topography.

[66]  P. Hansen,et al.  Dorsal stream associations with orthographic and phonological processing , 2006, Neuroreport.

[67]  Daniel C. Javitt,et al.  Magnocellular contributions to impaired motion processing in schizophrenia , 2006, Schizophrenia Research.

[68]  L. Carmant,et al.  Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults , 2006, Clinical Neurophysiology.

[69]  Source Estimation of Contrast-related Perception Based on Frequency-Tagged Binocular Rivalry , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[70]  Christa Neuper,et al.  Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments. , 2006, Progress in brain research.

[71]  M Ramasubba Reddy,et al.  A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces , 2006, Physiological measurement.

[72]  Willy Wong,et al.  Optimal Window Length in the Windowed Adaptive Chirplet Analysis of Visual Evoked Potentials , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[73]  G. Panfili,et al.  A four command BCI system based on the SSVEP protocol , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[74]  G. Plourde Auditory evoked potentials. , 2006, Best practice & research. Clinical anaesthesiology.

[75]  Bo Hong,et al.  A practical VEP-based brain-computer interface , 2006, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[76]  Abderrahim Oulhaj,et al.  10 Hz flicker improves recognition memory in older people , 2006, BMC Neuroscience.

[77]  Reinhold Scherer,et al.  Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components , 2005, Journal of neural engineering.

[78]  The Processing of Spatial Form by the Human Brain Studied by Recording the Brain’s Electrical and Magnetic Responses to Visual Stimuli , 2005 .

[79]  D. Regan,et al.  Seeing spatial form , 2005 .

[80]  Philippe Kahane,et al.  High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex , 2005, NeuroImage.

[81]  Arnold J Wilkins,et al.  Photic‐ and Pattern‐induced Seizures: Expert Consensus of the Epilepsy Foundation of America Working Group , 2005, Epilepsia.

[82]  Andreas Keil,et al.  Additive effects of emotional content and spatial selective attention on electrocortical facilitation. , 2005, Cerebral cortex.

[83]  Hellmuth Obrig,et al.  The fast optical signal—Robust or elusive when non-invasively measured in the human adult? , 2005, NeuroImage.

[84]  D. Javitt,et al.  Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis , 2005, Schizophrenia Research.

[85]  John J. Foxe,et al.  Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[86]  Gao Xiaorong,et al.  Stimulation frequency extraction in SSVEP-based brain-computer interface , 2005, Proceedings. 2005 First International Conference on Neural Interface and Control, 2005..

[87]  Gao Xiaorong,et al.  Lead selection for SSVEP-based binocular rivalry , 2005, Proceedings. 2005 First International Conference on Neural Interface and Control, 2005..

[88]  Xiaorong Gao,et al.  Frequency Selection for SSVEP-based Binocular Rivalry , 2005, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005..

[89]  Marcia A. Bockbrader,et al.  Steady state visual evoked potential abnormalities in schizophrenia , 2005, Clinical Neurophysiology.

[90]  Peter Kirsch,et al.  Acquisition of typical EEG waveforms during fMRI: SSVEP, LRP, and frontal theta , 2005, NeuroImage.

[91]  Joseph Ciorciari,et al.  Steady-State Visually Evoked Potential topography associated with a visual vigilance task , 2005, Brain Topography.

[92]  John R. Smith,et al.  Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment , 2005, EURASIP J. Adv. Signal Process..

[93]  P. Jakobsson,et al.  Fourier-analysed Steady-state VEPs in Pre-school Children with and without Normal Binocularity , 2005, Documenta Ophthalmologica.

[94]  M. Ramasubba Reddy,et al.  Design and implementation of High Performance Visual Stimulator for Brain Computer Interfaces , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[95]  L. Piccini,et al.  A Wearable Home BCI system: preliminary results with SSVEP protocol , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[96]  Pradeep J Nathan,et al.  Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans , 2004, NeuroImage.

[97]  T Rowan Candy,et al.  Spatial vision deficits in infants and children with Down syndrome. , 2004, Investigative ophthalmology & visual science.

[98]  Daniele Marinazzo,et al.  Steady-state visual evoked potentials and phase synchronization in migraine patients. , 2004, Physical review letters.

[99]  Arjan Hillebrand,et al.  The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry , 2004, NeuroImage.

[100]  Vaegan,et al.  Visual evoked potentials standard (2004) , 2004, Documenta Ophthalmologica.

[101]  J. Parra,et al.  EEG Diagnostic Procedures and Special Investigations in the Assessment of Photosensitivity , 2004, Epilepsia.

[102]  M. Gazzaniga The cognitive neurosciences, 3rd edition , 2004 .

[103]  J. Odom VISUAL EVOKED POTENTIALS STANDARD , 2004 .

[104]  M. Bach,et al.  Do's and don'ts in Fourier analysis of steady-state potentials , 2004, Documenta Ophthalmologica.

[105]  O. Franzén,et al.  Evoked response correlates of psychophysical magnitude estimates for tactile stimulation in man , 2004, Experimental Brain Research.

[106]  A. Keil,et al.  Aberrant brain dynamics in schizophrenia: delayed buildup and prolonged decay of the visual steady-state response. , 2004, Brain research. Cognitive brain research.

[107]  Yijun Wang,et al.  Lead selection for SSVEP-based brain-computer interface , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[108]  J. Masdeu,et al.  Human Cerebral Activation during Steady-State Visual-Evoked Responses , 2003, The Journal of Neuroscience.

[109]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[110]  Klaus-Robert Müller,et al.  Increase Information Transfer Rates in BCI by CSP Extension to Multi-class , 2003, NIPS.

[111]  A. H Kemp,et al.  Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT) , 2003, NeuroImage.

[112]  Xiaorong Gao,et al.  A BCI-based environmental controller for the motion-disabled. , 2003, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[113]  Michael Bach,et al.  Adaptation characteristics of steady-state motion visual evoked potentials , 2003, Clinical Neurophysiology.

[114]  W. Perlstein,et al.  Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans , 2003, Neuroscience Letters.

[115]  Paul L Nunez,et al.  Fronto-Parietal Evoked Potential Synchronization is Increased During Mental Rotation , 2003, Neuroreport.

[116]  François Mauguière,et al.  Human lateral geniculate nucleus and visual cortex respond to screen flicker , 2003, Annals of neurology.

[117]  Huan-qing Feng,et al.  Real time extraction of Visual Evoked Potentials , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.

[118]  R. B. Silberstein,et al.  Steady-State Visually Evoked Potential Topography during Processing of Emotional Valence in Healthy Subjects , 2002, NeuroImage.

[119]  Xiaorong Gao,et al.  Design and implementation of a brain-computer interface with high transfer rates , 2002, IEEE Transactions on Biomedical Engineering.

[120]  E. Callaway,et al.  S Cone Contributions to the Magnocellular Visual Pathway in Macaque Monkey , 2002, Neuron.

[121]  M. Browne,et al.  Low-probability event-detection and separation via statistical wavelet thresholding: an application to psychophysiological denoising , 2002, Clinical Neurophysiology.

[122]  F. Pasquier,et al.  Atteinte de la voie magnocellulaire dans la maladie d’Alzheimer , 2002 .

[123]  F. Pasquier,et al.  [Dysfunction of the magnocellular pathway in Alzheimer's disease]. , 2002, Revue neurologique.

[124]  An evolutionary approach to medicine. , 2001 .

[125]  Ming Cheng,et al.  Multiple color stimulus induced steady state visual evoked potentials , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[126]  R Quian Quiroga,et al.  Wavelet Transform in the analysis of the frequency composition of evoked potentials. , 2001, Brain research. Brain research protocols.

[127]  C. Schroeder,et al.  Dysfunction of early-stage visual processing in schizophrenia. , 2001, The American journal of psychiatry.

[128]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[129]  R. Bartholomew,et al.  Pokémon contagion: photosensitive epilepsy or mass psychogenic illness? , 2001, Southern medical journal.

[130]  M. Belmonte,et al.  Abnormal Attention in Autism Shown by Steady-State Visual Evoked Potentials , 2000 .

[131]  G Calhoun,et al.  Brain-computer interfaces based on the steady-state visual-evoked response. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[132]  R. Silberstein,et al.  Steady-state visually evoked potential topography during the continuous performance task in normal controls and schizophrenia , 2000, Clinical Neurophysiology.

[133]  E. Basar,et al.  Brain oscillations in perception and memory. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[134]  R. Silberstein,et al.  Steady-state visual evoked potentials and travelling waves , 2000, Clinical Neurophysiology.

[135]  K. Lehnertz,et al.  Nonlinear denoising of transient signals with application to event-related potentials , 2000, physics/0001069.

[136]  Richard B. Silberstein,et al.  Steady state visually evoked potential, brain resonances and cognitive processes , 2000 .

[137]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[138]  Shinsuke Shimojo,et al.  Pupillary response to chromatic flicker , 2000, Experimental Brain Research.

[139]  Shozo Tobimatsu,et al.  Steady-state vibration somatosensory evoked potentials: physiological characteristics and tuning function , 1999, Clinical Neurophysiology.

[140]  Cheng Ming,et al.  An EEG-based cursor control system , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.

[141]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[142]  E. Basar,et al.  Oscillatory Brain Dynamics, Wavelet Analysis, and Cognition , 1999, Brain and Language.

[143]  R. B. Silberstein,et al.  Steady State Visually Evoked Potential Correlates of Auditory Hallucinations in Schizophrenia , 1998, NeuroImage.

[144]  M. de Tommaso,et al.  EEG Spectral Analysis in Migraine Without Aura Attacks , 1998, Cephalalgia : an international journal of headache.

[145]  W. Singer,et al.  The response of cat visual cortex to flicker stimuli of variable frequency , 1998, The European journal of neuroscience.

[146]  Matthias M. Müller,et al.  Effects of spatial selective attention on the steady-state visual evoked potential in the 20-28 Hz range. , 1998, Brain research. Cognitive brain research.

[147]  M. de Tommaso,et al.  Discrimination between migraine patients and normal subjects based on steady state visual evoked potentials: discriminant analysis and artificial neural network classifiers. , 1997, Functional neurology.

[148]  R A Koeppe,et al.  PET study of greater visual activation in schizophrenia. , 1997, The American journal of psychiatry.

[149]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.

[150]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[151]  Matthias M. Müller Oscillatory cortical activities in the human brain , 1997 .

[152]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[153]  I J Murray,et al.  Amplitude and phase variations of harmonic components in human achromatic and chromatic visual evoked potentials , 1996, Visual Neuroscience.

[154]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[155]  S. Hillyard,et al.  Selective attention to stimulus location modulates the steady-state visual evoked potential. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[156]  C. Davila,et al.  Detection of near threshold contrast visual evoked potentials using coherent detection techniques , 1996, Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference.

[157]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[158]  M Tagliati,et al.  The pattern electroretinogram in Parkinson's disease reveals lack of retinal spatial tuning. , 1996, Electroencephalography and clinical neurophysiology.

[159]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[160]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[161]  R. Silberstein,et al.  Steady-state visually evoked potential topography during the Wisconsin card sorting test. , 1995, Electroencephalography and clinical neurophysiology.

[162]  C. E. Davila,et al.  Adaptive eigenfiltering of steady-state VEPs , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[163]  Anthony M. Norcia,et al.  Evaluation of a new Laplacian filter for steady-state EPs , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[164]  P. Renshaw,et al.  Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. , 1994, The American journal of psychiatry.

[165]  A. Khotanzad,et al.  Estimation of single sweep steady-state visual evoked potentials by adaptive line enhancement , 1994, IEEE Transactions on Biomedical Engineering.

[166]  R. T. Pivik,et al.  Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. , 1993, Psychophysiology.

[167]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[168]  G. Bernardi,et al.  An electrophysiological study of D2 dopaminergic actions in normal human retina: A tool in Parkinson's disease , 1992, Neuroscience Letters.

[169]  A Z Snyder,et al.  Steady-state vibration evoked potentials: descriptions of technique and characterization of responses. , 1992, Electroencephalography and clinical neurophysiology.

[170]  R. Gregory,et al.  Evolution of the Eye and Visual System , 1991 .

[171]  J. Victor,et al.  A new statistic for steady-state evoked potentials. , 1991, Electroencephalography and clinical neurophysiology.

[172]  S. Arlinger,et al.  Visual evoked potentials: relation to adult speechreading and cognitive function. , 1989, Journal of speech and hearing research.

[173]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[174]  David Regan,et al.  A frequency domain technique for characterizing nonlinearities in biological systems , 1988 .

[175]  M. Yahr,et al.  Temporal frequency-dependent vep changes in Parkinson's disease , 1986, Vision Research.

[176]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[177]  H. Whyte,et al.  Development of visual evoked potentials in neonates. A study using light emitting diode goggles. , 1985, Archives of disease in childhood.

[178]  T W Picton,et al.  Human auditory steady state potentials. , 1984, Ear and hearing.

[179]  K. Nakayama,et al.  Steady state visual evoked potentials in the alert primate , 1982, Vision Research.

[180]  D. Regan,et al.  COMPARISON OF TRANSIENT AND STEADY‐STATE METHODS * , 1980, Annals of the New York Academy of Sciences.

[181]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[182]  E. Basar EEG-brain dynamics: Relation between EEG and Brain evoked potentials , 1980 .

[183]  D. Regan Electrical responses evoked from the human brain. , 1979, Scientific American.

[184]  D. Regan Assessment of visual acuity by evoked potential recording: Ambiguity caused by temporal dependence of spatial frequency selectivity , 1978, Vision Research.

[185]  J. Kelsey,et al.  Visual Evoked Potentials in Man: New Developments , 1978 .

[186]  R J Sclabassi,et al.  Somatosensory responses to stimulus trains: normative data. , 1974, Electroencephalography and clinical neurophysiology.

[187]  D. Regan,et al.  An Effect of Stimulus Colour on Average Steady-state Potentials evoked in Man , 1966, Nature.

[188]  D. Regan Some characteristics of average steady-state and transient responses evoked by modulated light. , 1966, Electroencephalography and clinical neurophysiology.

[189]  G. Dawson A summation technique for the detection of small evoked potentials. , 1954, Electroencephalography and clinical neurophysiology.