Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.

Colloidal quantum dot (CQD) photovoltaics offer a promising approach to harvest the near-IR region of the solar spectrum, where half of the sun's power reaching the earth resides. High external quantum efficiencies have been obtained in the visible region in lead chalcogenide CQD photovoltaics. However, the corresponding efficiencies for band gap radiation in the near-infrared lag behind because the thickness of CQD photovoltaic layers from which charge carriers can be extracted is limited by short carrier diffusion lengths. Here, we investigate, using a combination of electrical and optical characterization techniques, ligand passivation strategies aimed at tuning the density and energetic distribution of charge trap states at PbS nanocrystal surfaces. Electrical and optical measurements reveal a more than 7-fold enhancement of the mobility-lifetime product of PbS CQD films treated with 3-mercaptopropionic acid (MPA) in comparison to traditional organic passivation strategies that have been examined in the literature. We show by direct head-to-head comparison that the greater mobility-lifetime products of MPA-treated devices enable markedly greater short-circuit current and higher power conversion efficiency under AM1.5 illumination. Our findings highlight the importance of selecting ligand treatment strategies capable of passivating a diversity of surface states to enable shallower and lower density trap distributions for better transport and more efficient CQD solar cells.

[1]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[2]  Ronald Österbacka,et al.  Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells , 2005 .

[3]  Edward H. Sargent,et al.  Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. , 2008, ACS nano.

[4]  Ryan D. Pensack,et al.  Excitation Transport and Charge Separation in an Organic Photovoltaic Material: Watching Excitations Diffuse to Interfaces , 2008 .

[5]  Dmitri V Talapin,et al.  Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. , 2006, Journal of the American Chemical Society.

[6]  Glen B. Deacon,et al.  Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination , 1980 .

[7]  M. Shim,et al.  Long-Lived Delocalized Electron States in Quantum Dots: A Step-Scan Fourier Transform Infrared Study , 2000 .

[8]  Time-resolved intraband relaxation of strongly confined electrons and holes in colloidal PbSe nanocrystals , 2004, cond-mat/0412143.

[9]  Lukasz Brzozowski,et al.  Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. , 2010, Journal of the American Chemical Society.

[10]  Lukasz Brzozowski,et al.  Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. , 2010, ACS nano.

[11]  A Paul Alivisatos,et al.  Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. , 2007, Nano letters.

[12]  Victor I Klimov,et al.  Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon. , 2009, Nano letters.

[13]  P. Guyot-Sionnest,et al.  Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. , 2005, The Journal of chemical physics.

[14]  W. Warta,et al.  Solar cell efficiency tables (version 35) , 2010 .

[15]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[16]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[17]  E. Sargent Infrared photovoltaics made by solution processing , 2009 .

[18]  Ronald Österbacka,et al.  Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulk-heterojunction solar cells , 2006 .

[19]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[20]  M. Kovalenko,et al.  Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. , 2010, Journal of the American Chemical Society.

[21]  Ryan D. Pensack,et al.  Charge Trapping in Organic Photovoltaic Materials Examined with Time-Resolved Vibrational Spectroscopy† , 2010 .

[22]  Byung-Ryool Hyun,et al.  PbSe nanocrystal excitonic solar cells. , 2009, Nano letters.

[23]  Ilan Gur,et al.  Hybrid Organic-Nanocrystal Solar Cells , 2005 .

[24]  F. Wise,et al.  Electronic states and optical properties of PbSe nanorods and nanowires , 2010, 1010.6047.

[25]  Philippe Guyot-Sionnest,et al.  Intraband relaxation in CdSe quantum dots , 1999 .

[26]  C. A. Nelson,et al.  Anomalously Large Polarization Effect Responsible for Excitonic Red Shifts in PbSe Quantum Dot Solids , 2011 .

[27]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[28]  E. Aydil,et al.  Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency , 2009 .

[29]  Xiaomei Jiang,et al.  Confinement-dependent below-gap state in PbS quantum dot films probed by continuous-wave photoinduced absorption. , 2008, The journal of physical chemistry. B.

[30]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[31]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[32]  P. Guyot-Sionnest,et al.  Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. , 2007, The Journal of chemical physics.

[33]  E. Aydil,et al.  Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. , 2009, ACS nano.

[34]  Larissa Levina,et al.  Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. , 2009, Nature nanotechnology.

[35]  N. S. Sariciftci,et al.  A review of charge transport and recombination in polymer/fullerene organic solar cells , 2007 .

[36]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[37]  M. Kastner,et al.  Charge transport in mixed CdSe and CdTe colloidal nanocrystal films , 2010 .

[38]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[39]  S. Tsang,et al.  Highly efficient cross-linked PbS nanocrystal/C60 hybrid heterojunction photovoltaic cell , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[40]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[41]  C. Frisbie,et al.  Size-dependent electrical transport in CdSe nanocrystal thin films. , 2010, Nano letters.

[42]  Scott M. Geyer,et al.  Photoconduction in Annealed and Chemically Treated CdSe/ZnS Inorganic Nanocrystal Films , 2008 .

[43]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[44]  M. Shim,et al.  Intraband hole burning of colloidal quantum dots , 2001 .

[45]  Edward H. Sargent,et al.  Schottky-quantum dot photovoltaics for efficient infrared power conversion , 2008 .

[46]  Edward H. Sargent,et al.  Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion , 2008 .

[47]  T. Waite,et al.  Theoretical Treatment of the Kinetics of Diffusion-Limited Reactions , 1957 .

[48]  Ryan D. Pensack,et al.  Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic materials. , 2009, Physical chemistry chemical physics : PCCP.

[49]  Jiyoul Lee,et al.  High carrier densities achieved at low voltages in Ambipolar PbSe nanocrystal thin-film transistors. , 2009, Nano letters.

[50]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[51]  M. Beard,et al.  Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. , 2009, Nano letters.

[52]  Edward H. Sargent,et al.  Tandem colloidal quantum dot solar cells employing a graded recombination layer , 2011 .