Languages Modulo Normalization

We propose a new class of tree automata, called tree automata with normalization(TAN). This framework is obtained by extending equational tree automata, and improves the results of the previous work, such as: recognized tree languages modulo the idempotencyf(x,x) = xare closed under complement, which are notclosed in equational tree automata, besides we do not lose important decidability. In the paper, first we investigate the closure properties of this class for Boolean operations and the decidability relative to the equational tree automata. Next we consider the relationship to other automata frameworks, in particular, hedge automata, which is a class of unranked tree automata. Hedge automata have been recognized in the XML database community as a theoretical basis for modeling the manipulation of semi-structured data. Through the observation about transformations from hedge automata to tree automata, we discuss advantages in the expressiveness and complexity of TAN. As an application of our framework, we show an example that XML schema with constraints that can not be dealt with by other tree automata frameworks is manipulated by TAN.

[1]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[2]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[3]  José Meseguer,et al.  A Sufficient Completeness Checker for Linear Order-Sorted Specifications Modulo Axioms , 2006, IJCAR.

[4]  Kumar Neeraj Verma,et al.  Two-Way Equational Tree Automata for AC-Like Theories: Decidability and Closure Properties , 2003, RTA.

[5]  Denis Lugiez,et al.  XML schema, tree logic and sheaves automata , 2003, Applicable Algebra in Engineering, Communication and Computing.

[6]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[7]  James W. Thatcher,et al.  Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory , 1967, J. Comput. Syst. Sci..

[8]  Hiroyuki Seki,et al.  Right-Linear Finite Path Overlapping Term Rewriting Systems Effectively Preserve Recognizability , 2000, RTA.

[9]  Toshinori Takai,et al.  Decidability and Closure Properties of Equational Tree Languages , 2002, RTA.

[10]  Dan Suciu,et al.  Typechecking for XML transformers , 2000, J. Comput. Syst. Sci..

[11]  Mahesh Viswanathan,et al.  Propositional Tree Automata , 2006, RTA.

[12]  Sebastian Mödersheim,et al.  The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications , 2005, CAV.

[13]  Toshinori Takai,et al.  ACTAS : A System Design for Associative and Commutative Tree Automata Theory , 2005, Electron. Notes Theor. Comput. Sci..

[14]  Valérie Viet Triem Tong,et al.  Reachability Analysis over Term Rewriting Systems , 2004, Journal of Automated Reasoning.

[15]  Temur Kutsia,et al.  Solving Equations Involving Sequence Variables and Sequence Functions , 2004, AISC.

[16]  Nils Klarlund,et al.  MONA Version 1.4 - User Manual , 2001 .

[17]  Philip Wadler Call-by-Value Is Dual to Call-by-Name - Reloaded , 2005, RTA.

[18]  Joachim Niehren,et al.  Querying Unranked Trees with Stepwise Tree Automata , 2004, RTA.

[19]  Denis Lugiez,et al.  Multitree automata that count , 2005, Theor. Comput. Sci..

[20]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[21]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[22]  Makoto Murata,et al.  Hedge automata: a formal model for xml schemata , 1999 .

[23]  Claude Marché,et al.  Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equations , 1996, J. Symb. Comput..

[24]  Silvano Dal-Zilio,et al.  XML Schema, Tree Logic and Sheaves Automata , 2003, RTA.

[25]  Eric van der Vlist,et al.  XML Schema , 2002 .

[26]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[27]  Kumar Neeraj Verma On Closure under Complementation of Equational Tree Automata for Theories Extending AC , 2003, LPAR.

[28]  Helmut Seidl,et al.  Exact XML Type Checking in Polynomial Time , 2007, ICDT.

[29]  Benjamin C. Pierce,et al.  Regular expression types for XML , 2000, TOPL.

[30]  Florent Jacquemard,et al.  Ground reducibility is EXPTIME-complete , 2003, Inf. Comput..

[31]  Hitoshi Ohsaki,et al.  Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories , 2001, CSL.

[32]  Joachim Niehren,et al.  Minimizing Tree Automata for Unranked Trees , 2005, DBPL.

[33]  Thomas Schwentick,et al.  Numerical document queries , 2003, PODS.

[34]  Joost Engelfriet,et al.  A comparison of pebble tree transducers with macro tree transducers , 2003, Acta Informatica.