Many roads to maturity: microRNA biogenesis pathways and their regulation

[1]  Petra Schwille,et al.  Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs , 2009, Cell.

[2]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[3]  C. Semple,et al.  Posttranscriptional Regulation of miRNAs Harboring Conserved Terminal Loops , 2008, Molecular cell.

[4]  Guisheng Song,et al.  MiR-433 and miR-127 Arise from Independent Overlapping Primary Transcripts Encoded by the miR-433-127 Locus , 2008, PloS one.

[5]  C. Joo,et al.  Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. , 2008, Molecular cell.

[6]  P. Sætrom,et al.  MicroRNA-directed transcriptional gene silencing in mammalian cells , 2008, Proceedings of the National Academy of Sciences.

[7]  Joshua J. Forman,et al.  A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence , 2008, Proceedings of the National Academy of Sciences.

[8]  P. Ongusaha,et al.  Prolyl 4-hydroxylation regulates Argonaute 2 stability , 2008, Nature.

[9]  Xuemei Chen,et al.  Degradation of microRNAs by a Family of Exoribonucleases in Arabidopsis , 2008, Science.

[10]  S. Ropero,et al.  A microRNA DNA methylation signature for human cancer metastasis , 2008, Proceedings of the National Academy of Sciences.

[11]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[12]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[13]  I. Bozzoni,et al.  Primary microRNA transcripts are processed co-transcriptionally , 2008, Nature Structural &Molecular Biology.

[14]  Molly Megraw,et al.  Frequency and fate of microRNA editing in human brain , 2008, Nucleic acids research.

[15]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[16]  L. Smirnova,et al.  A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment , 2008, Nature Cell Biology.

[17]  Piotr Sliz,et al.  Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28* , 2008, Journal of Biological Chemistry.

[18]  P. Graves,et al.  Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. , 2008, The Biochemical journal.

[19]  D. Haber,et al.  Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites , 2008, Proceedings of the National Academy of Sciences.

[20]  Jack F Kirsch,et al.  Autoinhibition of human dicer by its internal helicase domain. , 2008, Journal of molecular biology.

[21]  A. F. Bochner,et al.  An Argonaute Transports siRNAs from the Cytoplasm to the Nucleus , 2008, Science.

[22]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[23]  Gregory J. Hannon,et al.  Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide , 2008, Cell.

[24]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[25]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[26]  Hervé Seitz,et al.  Argonaute Loading Improves the 5′ Precision of Both MicroRNAs and Their miRNA∗ Strands in Flies , 2008, Current Biology.

[27]  Jennifer A. Doudna,et al.  In vitro reconstitution of the human RISC-loading complex , 2008, Proceedings of the National Academy of Sciences.

[28]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[29]  Yuriy Gusev,et al.  Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. , 2007, RNA.

[30]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[31]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[32]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[33]  D. Haber,et al.  Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression , 2007, Cell.

[34]  H. Furneaux,et al.  P68 RNA Helicase Unwinds the Human let-7 MicroRNA Precursor Duplex and Is Required for let-7-directed Silencing of Gene Expression* , 2007, Journal of Biological Chemistry.

[35]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[36]  Stefano Volinia,et al.  Interferon modulation of cellular microRNAs as an antiviral mechanism , 2007, Nature.

[37]  Anton J. Enright,et al.  A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. , 2007, Genes & development.

[38]  Yukio Kawahara,et al.  RNA editing of the microRNA‐151 precursor blocks cleavage by the Dicer–TRBP complex , 2007, EMBO reports.

[39]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[40]  Phillip D. Zamore,et al.  Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1 , 2007, Cell.

[41]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[42]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[43]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[44]  S. Guil,et al.  The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a , 2007, Nature Structural &Molecular Biology.

[45]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[46]  Tariq M Rana,et al.  RNA helicase A interacts with RISC in human cells and functions in RISC loading. , 2007, Molecular cell.

[47]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[48]  B. O’Malley,et al.  DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs , 2007, Nature Cell Biology.

[49]  Peng Jin,et al.  Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. , 2007, Human molecular genetics.

[50]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[51]  A. Hatzigeorgiou,et al.  Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs , 2007, Science.

[52]  H. Sültmann,et al.  The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. , 2007, Cancer research.

[53]  V. Kim,et al.  Processing of intronic microRNAs , 2007, The EMBO journal.

[54]  Lena Smirnova,et al.  The FASEB Journal • Research Communication Post-transcriptional regulation of the let-7 microRNA during neural cell specification , 2022 .

[55]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[56]  R. Carthew,et al.  Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. , 2006, RNA.

[57]  Pedro J. Batista,et al.  Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi , 2006, Cell.

[58]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[59]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[60]  V. Narry Kim,et al.  Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing , 2006, Nucleic acids research.

[61]  Joel S Parker,et al.  Extensive post-transcriptional regulation of microRNAs and its implications for cancer. , 2006, Genes & development.

[62]  G. Obernosterer,et al.  Post-transcriptional regulation of microRNA expression. , 2006, RNA.

[63]  Sven Diederichs,et al.  Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. , 2006, Cancer research.

[64]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[65]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[66]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[67]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[68]  Stefan L Ameres,et al.  Cleavage of the siRNA passenger strand during RISC assembly in human cells , 2006, EMBO reports.

[69]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[70]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[71]  E. Lund,et al.  Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[72]  Anton J. Enright,et al.  RNA editing of human microRNAs , 2006, Genome Biology.

[73]  Z. Mourelatos,et al.  A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. , 2005, Genes & development.

[74]  T. Tuschl,et al.  Identification of Novel Argonaute-Associated Proteins , 2005, Current Biology.

[75]  M. Siomi,et al.  Slicer function of Drosophila Argonautes and its involvement in RISC formation. , 2005, Genes & development.

[76]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[77]  Xiaodong Wang,et al.  Argonaute2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation , 2005, Cell.

[78]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[79]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[80]  Xuemei Chen,et al.  Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis , 2005, Current Biology.

[81]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[82]  B. Cullen,et al.  Efficient Processing of Primary microRNA Hairpins by Drosha Requires Flanking Nonstructured RNA Sequences* , 2005, Journal of Biological Chemistry.

[83]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[84]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[85]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[86]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[87]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[88]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[89]  A. Scadden The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage , 2005, Nature Structural &Molecular Biology.

[90]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[91]  Shridar Ganesan,et al.  Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. , 2005, Genes & development.

[92]  Shuta Tomida,et al.  Reduced expression of Dicer associated with poor prognosis in lung cancer patients , 2005, Cancer science.

[93]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[94]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[95]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[96]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[97]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[98]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[99]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[100]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[101]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[102]  Henry Mirsky,et al.  RNA editing of a miRNA precursor. , 2004, RNA.

[103]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[104]  Akira Ishizuka,et al.  Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. , 2004, Genes & development.

[105]  S. Moon,et al.  Human embryonic stem cells express a unique set of microRNAs. , 2004, Developmental biology.

[106]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[107]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[108]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[109]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[110]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[111]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[112]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[113]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[114]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[115]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[116]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[117]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[118]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[119]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[120]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[121]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[122]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.