Ab Initio Study of Compressed 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane (HMX), Cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-Hexanitrohexaazaisowurzitane (CL-20), 2,4,6-Trinitro-1,3,5-benzenetriamine (TATB), and Pentaerythritol Tetranitrate (PETN)

Using the PW91, PBE, and LDA density functional theories (DFT), we have calculated crystal structures for five energetic molecular crystals over a range of experimental pressures. These crystals are 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), and pentaerythritol tetranitrate (PETN). Both PW91 and PBE generally overestimate volumes relative to experimental values, while LDA underestimates crystal volumes when compared to experiment. However, the inaccuracy diminishes as pressures are increased. In particular, PW91 and PBE volumes approach experimental values at pressures greater than 6−7 GPa. Furthermore the PW91 and PBE volumes appear to converge to the same value as pressures increase, regardless of the size of the planewave basis set. We have also demonstrated that for systems such as these, care should be taken to ensure convergence in DFT calculations. We emph...

[1]  Maija M. Kuklja,et al.  Thermal Decomposition of Solid Cyclotrimethylene Trinitramine , 2001 .

[2]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[3]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[4]  E. Kaxiras,et al.  Electronic structure of solid nitromethane: Effects of high pressure and molecular vacancies , 2002 .

[5]  K. Hirao,et al.  Van der Waals interactions studied by density functional theory , 2005 .

[6]  Kimihiko Hirao,et al.  A density functional study of van der Waals interactions , 2002 .

[7]  S. Kearsley On the orthogonal transformation used for structural comparisons , 1989 .

[8]  A. Kunz,et al.  SIMULATION OF DEFECTS IN ENERGETIC MATERIALS. 3. THE STRUCTURE AND PROPERTIES OF RDX CRYSTALS WITH VACANCY COMPLEXES , 1999 .

[9]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[10]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[11]  E. Reed,et al.  Electronic excitations in shocked nitromethane , 2000 .

[12]  D. Schwalm,et al.  Dissociative recombination and low-energy inelastic electron collisions of the helium dimer ion , 2005 .

[13]  Marc-Antoine Perrin,et al.  Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. , 2005, The journal of physical chemistry. B.

[14]  A. Kunz,et al.  Ab initio simulation of defects in energetic materials: Hydrostatic compression of cyclotrimethylene trinitramine , 1999 .

[15]  J. Pekola,et al.  Measurement scheme of the Berry phase in superconducting circuits , 2006, cond-mat/0604198.

[16]  Jijun Zhao,et al.  Structural and vibrational properties of solid nitromethane under high pressure by density functional theory. , 2006, The Journal of chemical physics.

[17]  Robert W. Williams,et al.  van der Waals corrections to density functional theory calculations: Methane, ethane, ethylene, benzene, formaldehyde, ammonia, water, PBE, and CPMD , 2006 .

[18]  E. Stefanovich,et al.  An excitonic mechanism of detonation initiation in explosives , 2000 .

[19]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[20]  Kimihiko Hirao,et al.  A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. , 2005, The Journal of chemical physics.

[21]  B. Aduev,et al.  Role of electronic excitations in explosive decomposition of solids , 2001 .

[22]  D Bauer Emergence of classical orbits in few-cycle above-threshold ionization of atomic hydrogen. , 2005, Physical review letters.

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  Shear-strain induced decomposition of 1,1-diamino-2,2-dinitroethylene , 2006 .

[25]  A. C. Larson,et al.  The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene , 1965 .

[26]  H. Brand Ab initio all-electron periodic Hartree-Fock study of hydrostatic compression of pentaerythritol tetranitrate. , 2005, The journal of physical chemistry. B.

[27]  Jijun Zhao,et al.  First-principles study of pentaerythritol tetranitrate single crystals under high pressure: Vibrational properties , 2006 .

[28]  Betsy M. Rice,et al.  A New Approach to Propellant Formulation: Minimizing Life-Cycle Costs Through Science-Based Design , 2000 .

[29]  E. Prince,et al.  The crystal structure of cyclotrimethylenetrinitramine , 1972 .

[30]  F. Zerilli,et al.  Ab initio 0 K isotherm for crystalline 1,1-diamino-2,2-dinitroethylene , 2003 .

[31]  R. Baer,et al.  Density functional theory with correct long-range asymptotic behavior. , 2004, Physical review letters.

[32]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[33]  A. Kunz,et al.  Compression-induced effect on the electronic structure of cyclotrimethylene trinitramine containing an edge dislocation , 2000 .

[34]  A. Kunz,et al.  Electronic structure of molecular crystals containing edge dislocations , 2001 .

[35]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[36]  D. Oxtoby,et al.  Density Functional Methods in the Statistical Mechanics of Materials , 2002 .

[37]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  Y. Gupta,et al.  First-principles vibrational studies of pentaerythritol crystal under hydrostatic pressure , 2006 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  H. Brand Periodic Hartree-Fock study of the elasticity of pentaerythritol tetranitrate , 2006 .

[42]  van der Waals interaction of simple, parallel polymers. , 2005, The Journal of chemical physics.

[43]  M. Miao,et al.  Density-functional studies of high-pressure properties and molecular dissociations of halogen molecular crystals , 2003 .

[44]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[45]  F. Zerilli,et al.  Equation of state and structural changes in diaminodinitroethylene under compression. , 2004, The Journal of chemical physics.

[46]  F. Zerilli,et al.  First principles calculation of the mechanical compression of two organic molecular crystals. , 2006, The journal of physical chemistry. A.

[47]  T. Russell,et al.  Initiation of chemistry in molecular solids by processes involving electronic excited states , 2002 .

[48]  Y. Gupta,et al.  Experimental and Theoretical Study of Pentaerythritol Tetranitrate Conformers , 2004 .

[49]  G. Scuseria,et al.  An ab Initio Study of Solid Nitromethane, HMX, RDX, and CL20: Successes and Failures of DFT , 2004 .

[50]  Yuri A. Gruzdkov,et al.  Vibrational Properties and Structure of Pentaerythritol Tetranitrate , 2001 .

[51]  P. Halleck,et al.  The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression , 1975 .

[52]  H. Cady,et al.  Pentaerythritol tetranitrate II: its crystal structure and transformation to PETN I; an algorithm for refinement of crystal structures with poor data , 1975 .

[53]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[54]  M. Challacombe,et al.  All-electron density-functional studies of hydrostatic compression of pentaerythritol tetranitrate C(CH2ONO2)4 , 2004 .

[55]  F. Gygi,et al.  Early chemistry in hot and dense nitromethane: molecular dynamics simulations. , 2004, The Journal of chemical physics.

[56]  S. Rashkeev,et al.  Electronic excitations and decomposition of 1,1-diamino-2,2-dinitroethylene , 2003 .

[57]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[58]  M. Nicol,et al.  Raman scattering studies of the high-pressure stability of pentaerythritol tetranitrate, C(CH2ONO2)4. , 2005, The journal of physical chemistry. B.

[59]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[60]  Andrew P. Chafin,et al.  Synthesis of polyazapolycyclic caged polynitramines , 1998 .

[61]  Jijun Zhao,et al.  First-principles intermolecular binding energies in organic molecular crystals , 2004 .

[62]  Tanaka Kiyoshi,et al.  [Cr2Cl9]3‐及び[Mo2Cl9]3‐イオンの低い状態の電子構造の理論研究 , 2005 .

[63]  V. Tsirelson,et al.  Chemical bonding in pentaerythritol at very low temperature or at high pressure: an experimental and theoretical study. , 2006, Acta crystallographica. Section B, Structural science.

[64]  Theoretical chemical characterization of energetic materials , 2006 .

[65]  Mark E. Tuckerman,et al.  Ab initio molecular dynamics study of solid nitromethane , 1998 .