A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows

We present a methodology for the large-eddy simulation of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). A description of a conservative, flux-based hybrid numerical method that uses both centered finite-difference and a weighted essentially non-oscillatory (WENO) scheme is given, encompassing the cases of scheme alternation and internal mesh interfaces resulting from SAMR. In this method, the centered scheme is used in turbulent flow regions while WENO is employed to capture shocks. One-, two- and three-dimensional numerical experiments and example simulations are presented including homogeneous shock-free turbulence, a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability.

[1]  M. Berger ON CONSERVATION AT GRID INTERFACES. , 1987 .

[2]  F. Clauser The Structure of Turbulent Shear Flow , 1957, Nature.

[3]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[4]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[5]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[6]  Juan Pedro Mellado,et al.  A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation , 2002, Journal of Fluid Mechanics.

[7]  L. H. Howell,et al.  Radiation diffusion for multi-fluid Eulerian hydrodynamics with adaptive mesh refinement , 2003 .

[8]  P. Colella,et al.  A CONSERVATIVE ADAPTIVE-MESH ALGORITHM FOR UNSTEADY, COMBINED-MODE HEAT TRANSFER USING THE DISCRETE ORDINATES METHOD , 1999 .

[9]  Per Lötstedt,et al.  Implicit Solution of Hyperbolic Equations with Space-Time Adaptivity , 2002 .

[10]  Margot Gerritsen,et al.  Designing an efficient solution strategy for fluid flows. 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations , 1996 .

[11]  A. Cook A Consistent Approach to Large Eddy Simulation Using Adaptive Mesh Refinement , 1999 .

[12]  W. Cabot,et al.  A high-wavenumber viscosity for high-resolution numerical methods , 2004 .

[13]  T. A. Zang,et al.  On the rotation and skew-symmetric forms for incompressible flow simulations , 1991 .

[14]  K. Thompson Time-dependent boundary conditions for hyperbolic systems, II , 1990 .

[15]  G. Blaisdell,et al.  Numerical simulation of compressible homogeneous turbulence , 1991 .

[16]  Miguel R. Visbal,et al.  Turbulence spectra characteristics of high order schemes for direct and large eddy simulation , 2001 .

[17]  Miguel R. Visbal,et al.  Advances in the Application of High-order Techniques in Simulation of Multi-disciplinary Phenomena , 2003 .

[18]  M. M. Rai,et al.  Applications of a conservative zonal scheme to transient and geometrically complex problems , 1986 .

[19]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[20]  Kenneth J. Ruschak,et al.  MODELING ARTIFICIAL BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOW , 2005 .

[21]  Ephraim Gutmark,et al.  The planar turbulent jet , 1976, Journal of Fluid Mechanics.

[22]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[23]  L. Trefethen Stability of finite difference models containing two boundaries or interfaces , 1985 .

[24]  Ralf Deiterding,et al.  A low-numerical dissipation, patch-based adaptive-mesh-refinement method for large-eddy simulation of compressible flows , 2006 .

[25]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[26]  A. Benkenida,et al.  Patched grid and adaptive mesh refinement strategies for the calculation of the transport of vortices , 2002 .

[27]  Chi-Wang Shu,et al.  Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces , 2003, J. Sci. Comput..

[28]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[29]  James C. Browne,et al.  On partitioning dynamic adaptive grid hierarchies , 1996, Proceedings of HICSS-29: 29th Hawaii International Conference on System Sciences.

[30]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[31]  Noel T. Clemens,et al.  The large-scale turbulent structure of nonpremixed planar jet flames , 1999 .

[32]  A. Chertock,et al.  Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, II , 2000 .

[33]  Robert Vichnevetsky,et al.  Wave propagation and reflection in irregular grids for hyperbolic equations , 1987 .

[34]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[35]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[36]  Gordon Erlebacher,et al.  High-order ENO schemes applied to two- and three-dimensional compressible flow , 1992 .

[37]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[38]  Ralf Deiterding,et al.  Construction and Application of an AMR Algorithm for Distributed Memory Computers , 2005 .

[39]  R. F. Warming,et al.  Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows , 1976 .

[40]  Amable Liñán,et al.  The virtual origin as a first-order correction for the far-field description of laminar jets , 2002 .

[41]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[42]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[43]  P. Lax,et al.  Systems of conservation laws , 1960 .

[44]  D. Pullin A vortex-based model for the subgrid flux of a passive scalar , 2000 .

[45]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[46]  David H. Rudy,et al.  A nonreflecting outflow boundary condition for subsonic navier-stokes calculations , 1980 .

[47]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[48]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[49]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[50]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[51]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[52]  Bradford Sturtevant,et al.  Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface , 1995 .

[53]  John C. Strikwerda,et al.  Initial boundary value problems for the method of lines , 1980 .

[54]  Per Lötstedt,et al.  Accurate and stable grid interfaces for finite volume methods , 2004 .

[55]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[56]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[57]  M. Rai A conservative treatment of zonal boundaries for Euler equation calculations , 1986 .

[58]  Ralf Deiterding,et al.  Parallel adaptive simulation of multi-dimensional detonation structures , 2003 .

[59]  D. Pullin,et al.  A vortex-based subgrid stress model for large-eddy simulation , 1997 .

[60]  P. Moin,et al.  A further study of numerical errors in large-eddy simulations , 2003 .

[61]  Alexandre Ern,et al.  Coupling multimodelling with local mesh refinement for the numerical computation of laminar flames , 2004 .

[62]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[63]  B. Kosović,et al.  Subgrid-scale modeling for large-eddy simulations of compressible turbulence , 2002 .

[64]  Peter MacNeice,et al.  Interface conditions for wave propagation through mesh refinement boundaries , 2004 .

[65]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[66]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[67]  Joel H. Ferziger,et al.  Numerical simulation of a compressible, homogeneous, turbulent shear flow , 1981 .

[68]  H. Kreiss Stability theory for difference approximations of mixed initial boundary value problems. I , 1968 .

[69]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[70]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[71]  Alina Chertock,et al.  Strict Stability of High-Order Compact Implicit Finite-Difference Schemes , 2000 .

[72]  Tobias Voelkl,et al.  A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation of incompressible flow , 2000 .

[73]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[74]  Dale Pullin,et al.  Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock , 2006, Journal of Fluid Mechanics.