Matrix block formulation of closed-loop memoryless Stackelberg strategy for discrete-time games

Stackelberg strategies with closed-loop information structure are well known to be delicate to design in general. Nevertheless when they are restricted to the case of memoryless ones, that is when the controls are function of the time and the current state, then they are strongly time consistent. Due to this property, it is possible to compute step by step backward in time the value functions associated with the Stackelberg equilibrium. A new method, using a matrix block formulation is provided here to facilitate this numerical computation. An example illustrates this method.

[1]  P. Bernhard,et al.  Commande optimale linéaire quadratique des systèmes implicites discrets , 1986 .

[2]  E. Dockner,et al.  Differential Games in Economics and Management Science: Stochastic differential games , 2000 .

[3]  Jacob Engwerda,et al.  LQ Dynamic Optimization and Differential Games , 2005 .

[4]  Robert Pindyck,et al.  Optimal economic stabilization policies under decentralized control and conflicting objectives , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[5]  J. B. Cruz,et al.  Nonclassical control problems and Stackelberg games , 1979 .

[6]  Y. Ho Differential games, dynamic optimization, and generalized control theory , 1970 .

[7]  G. P. Papavassilopoulos,et al.  Sufficient conditions for Stackelberg and Nash strategies with memory , 1980 .

[8]  H. Abou-Kandil,et al.  Analytical solution for an open-loop Stackelberg game , 1985 .

[9]  Gerhard Freiling,et al.  A survey of nonsymmetric Riccati equations , 2002 .

[10]  M. Jungers,et al.  Properties of coupled Riccati equations in Stackelberg games with time preference rate , 2004 .

[11]  J. V. Medanic,et al.  Closed-loop Stackelberg strategies in linear-quadratic problems , 1978 .

[12]  B. Tolwinski Closed-loop Stackelberg solution to a multistage linear-quadratic game , 1981 .

[13]  H. Abou-Kandil,et al.  Closed-form solution for discrete-time linear-quadratic Stackelberg games , 1990 .

[14]  Marc Jungers,et al.  On Linear-Quadratic Stackelberg Games With Time Preference Rates , 2008, IEEE Transactions on Automatic Control.

[15]  H. Abou-Kandil,et al.  Matrix Riccati Equations in Control and Systems Theory , 2003, IEEE Transactions on Automatic Control.

[16]  J. Cruz,et al.  Additional aspects of the Stackelberg strategy in nonzero-sum games , 1973 .

[17]  Ngo Van Long,et al.  Differential Games in Economics and Management Science: List of tables , 2000 .

[18]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[19]  Tamer Basar,et al.  Team-optimal closed-loop Stackelberg strategies in hierarchical control problems , 1980, Autom..

[20]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[21]  K. Meyer,et al.  Canonical forms for symplectic and Hamiltonian matrices , 1974 .

[22]  Jr. J. Cruz,et al.  Leader-follower strategies for multilevel systems , 1978 .

[23]  J. Neumann,et al.  The Theory of Games and Economic Behaviour , 1944 .

[24]  B. Tolwinski A Stackelberg solution of dynamic games , 1983 .

[25]  P. Varaiya,et al.  Differential games , 1971 .

[26]  C. Chen,et al.  Stackelburg solution for two-person games with biased information patterns , 1972 .

[27]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .