Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas.

Nanoscale metallic barriers embedded in terahertz (THz) slot antennas are shown to provide unprecedented control of the transition state arising at the crossover between the full- and half-wavelength resonant modes of such antennas. We demonstrate strong near-field coupling between two paired THz slot antennas separated by a 5 nm wide nanobarrier, almost fully inducing the shift to the resonance of the double-length slot antenna. This increases by a factor of 50 the length-scale needed to observe similar coupling strengths in conventional air-gap antennas (around 0.1 nm), making the transition state readily accessible to experiment. Our measurements are in good agreement with a quantitative theoretical modeling, which also provides a simple physical picture of our observations.

[1]  Zhixin Li,et al.  Effect of grain-boundary scattering on the thermal conductivity of nanocrystalline metallic films , 2009 .

[2]  D. Kim,et al.  Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism , 2010 .

[3]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[4]  Dai-Sik Kim,et al.  Anomalous band formation in arrays of terahertz nanoresonators. , 2011, Physical review letters.

[5]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[6]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[7]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[8]  D. Grischkowsky,et al.  Terahertz time-domain spectroscopy of water vapor. , 1989, Optics letters.

[9]  Weili Zhang,et al.  Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness. , 2005, Optics letters.

[10]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[11]  J. Aizpurua,et al.  Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. , 2010, Nano letters.

[12]  Sang Woo Han,et al.  Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. , 2009, Nano letters.

[13]  Terahertz nanoresonators: Giant field enhancement and ultrabroadband performance , 2010 .

[14]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[15]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[16]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[17]  Esteban Moreno,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[18]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[19]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[20]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[21]  X. Zhang,et al.  Broadband detection capability of ZnTe electro-optic field detectors , 1996 .

[22]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[23]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[24]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[25]  L. Novotný,et al.  Antennas for light , 2011 .

[26]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[27]  W. Sigle,et al.  Hybridized metal slit eigenmodes as an illustration of Babinet's principle. , 2011, ACS nano.

[28]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[29]  Luis Martín-Moreno,et al.  Transmission and focusing of light in one-dimensional periodically nanostructured metals , 2002 .

[30]  Yongqi Fu,et al.  Investigation of physical properties of quartz after focused ion beam bombardment , 2005 .