暂无分享,去创建一个
[1] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[2] Johnathan M. Bardsley,et al. Hierarchical regularization for edge-preserving reconstruction of PET images , 2010 .
[3] F. Lucka. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in high-dimensional inverse problems using L1-type priors , 2012, 1206.0262.
[4] Christophe Andrieu,et al. Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.
[5] C. Fox,et al. Markov chain Monte Carlo Using an Approximation , 2005 .
[6] W. Marsden. I and J , 2012 .
[7] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[8] Marco A. Iglesias,et al. Hierarchical Bayesian level set inversion , 2016, Statistics and Computing.
[9] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[10] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[11] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..
[12] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[13] Daniela Calvetti,et al. Hypermodels in the Bayesian imaging framework , 2008 .
[14] Tsuyoshi Murata,et al. {m , 1934, ACML.
[15] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[16] Zheng Wang,et al. Bayesian Inverse Problems with l1 Priors: A Randomize-Then-Optimize Approach , 2016, SIAM J. Sci. Comput..
[17] Kody J. H. Law. Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..
[18] Yaming Yu,et al. To Center or Not to Center: That Is Not the Question—An Ancillarity–Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency , 2011 .
[19] Nicholas Zabaras,et al. Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .
[20] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[21] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[22] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[23] Tiangang Cui,et al. Semivariogram methods for modeling Whittle–Matérn priors in Bayesian inverse problems , 2018, Inverse Problems.
[24] Andrew M. Stuart,et al. Robust MCMC Sampling with Non-Gaussian and Hierarchical Priors in High Dimensions , 2018 .
[25] Omar Ghattas,et al. A Randomized Maximum A Posteriori Method for Posterior Sampling of High Dimensional Nonlinear Bayesian Inverse Problems , 2016, SIAM J. Sci. Comput..
[26] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[27] Zhewei Yao,et al. A TV-Gaussian prior for infinite-dimensional Bayesian inverse problems and its numerical implementations , 2015, 1510.05239.
[28] A. Wood,et al. Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .
[29] Tiangang Cui,et al. A posteriori stochastic correction of reduced models in delayed‐acceptance MCMC, with application to multiphase subsurface inverse problems , 2018 .
[30] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[31] H. Rue,et al. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .
[32] Johnathan M. Bardsley,et al. MCMC-Based Image Reconstruction with Uncertainty Quantification , 2012, SIAM J. Sci. Comput..
[33] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[34] Tiangang Cui,et al. Scalable Optimization-Based Sampling on Function Space , 2019, SIAM J. Sci. Comput..
[35] M. Girolami,et al. Hyperpriors for Matérn fields with applications in Bayesian inversion , 2016, Inverse Problems & Imaging.
[36] Qingping Zhou,et al. Bayesian inference and uncertainty quantification for image reconstruction with Poisson data , 2019, 1903.02075.
[37] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[38] Colin Fox,et al. Fast Sampling in a Linear-Gaussian Inverse Problem , 2015, SIAM/ASA J. Uncertain. Quantification.
[39] Andrew M. Stuart,et al. Hyperparameter Estimation in Bayesian MAP Estimation: Parameterizations and Consistency , 2019, The SMAI journal of computational mathematics.
[40] Daniel Rudolf,et al. On a Generalization of the Preconditioned Crank–Nicolson Metropolis Algorithm , 2015, Found. Comput. Math..
[41] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[42] Jere Heikkinen. Statistical Inversion Theory in X-ray Tomography , 2008 .
[43] Frances Y. Kuo,et al. Fast random field generation with H-matrices , 2017, Numerische Mathematik.
[44] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[45] Arvind K. Saibaba,et al. Efficient Marginalization-Based MCMC Methods for Hierarchical Bayesian Inverse Problems , 2019, SIAM/ASA J. Uncertain. Quantification.
[46] Andrew M. Stuart,et al. Analysis of the Gibbs Sampler for Hierarchical Inverse Problems , 2013, SIAM/ASA J. Uncertain. Quantification.
[47] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[48] Heikki Haario,et al. Randomize-Then-Optimize: A Method for Sampling from Posterior Distributions in Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..
[49] Andrew T. A. Wood,et al. Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian Random Fields , 1997 .
[50] Tiangang Cui,et al. Bayesian calibration of a large‐scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm , 2011 .
[51] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[52] Harri Hakula,et al. Conditionally Gaussian Hypermodels for Cerebral Source Localization , 2008, SIAM J. Imaging Sci..
[53] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[54] Frances Y. Kuo,et al. Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..
[55] G. Roberts,et al. On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .
[56] Hermann G. Matthies,et al. Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.
[57] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[58] Dean S. Oliver,et al. Metropolized Randomized Maximum Likelihood for Improved Sampling from Multimodal Distributions , 2015, SIAM/ASA J. Uncertain. Quantification.