Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet Divergence

Covariance matrices provide compact, informative feature descriptors for use in several computer vision applications, such as people-appearance tracking, diffusion-tensor imaging, activity recognition, among others. A key task in many of these applications is to compare different covariance matrices using a (dis)similarity function. A natural choice here is the Riemannian metric corresponding to the manifold inhabited by covariance matrices. But computations involving this metric are expensive, especially for large matrices and even more so, in gradient-based algorithms. To alleviate these difficulties, we advocate a novel dissimilarity measure for covariance matrices: the Jensen-Bregman LogDet Divergence. This divergence enjoys several useful theoretical properties, but its greatest benefits are: (i) lower computational costs (compared to standard approaches); and (ii) amenability for use in nearest-neighbor retrieval. We show numerous experiments to substantiate these claims.

[1]  Y. Censor,et al.  Parallel Optimization:theory , 1997 .

[2]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[3]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[4]  Maher Moakher,et al.  Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization , 2006, Visualization and Processing of Tensor Fields.

[5]  Stephen J. Maybank,et al.  Human Action Recognition under Log-Euclidean Riemannian Metric , 2009, ACCV.

[6]  Emilio Maggio,et al.  Particle PHD Filtering for Multi-Target Visual Tracking , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[7]  Thomas S. Huang,et al.  Emotion Recognition from Arbitrary View Facial Images , 2010, ECCV.

[8]  J. Ibrahim,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-Weighted Magnetic Resonance Imaging Data , 2007 .

[9]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[10]  Yuri Ivanov,et al.  Fast Approximate Nearest Neighbor Methods for Non-Euclidean Manifolds with Applications to Human Activity Analysis in Videos , 2010, ECCV.

[11]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  R. Bhatia Positive Definite Matrices , 2007 .

[15]  Chengjun Liu,et al.  Gabor-based kernel PCA with fractional power polynomial models for face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Y. Lim,et al.  Invariant metrics, contractions and nonlinear matrix equations , 2008 .

[17]  Xiaoqin Zhang,et al.  Visual tracking via incremental Log-Euclidean Riemannian subspace learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Chun Chen,et al.  Speech Emotion Classification on a Riemannian Manifold , 2008, PCM.

[19]  Frank Nielsen,et al.  Jensen-Bregman Voronoi Diagrams and Centroidal Tessellations , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[20]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[21]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[22]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[23]  Hidegoro Nakano,et al.  Invariant metrics , 1965 .

[24]  Inderjit S. Dhillon,et al.  Low-Rank Kernel Learning with Bregman Matrix Divergences , 2009, J. Mach. Learn. Res..

[25]  Paul M. Thompson,et al.  Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors , 2008, IEEE Transactions on Medical Imaging.

[26]  Xuelong Li,et al.  Gabor-Based Region Covariance Matrices for Face Recognition , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[27]  Frank Nielsen,et al.  On the Centroids of Symmetrized Bregman Divergences , 2007, ArXiv.

[28]  Frank Nielsen,et al.  Tailored Bregman Ball Trees for Effective Nearest Neighbors , 2009 .

[29]  Quanquan Gu,et al.  A similarity measure under Log-Euclidean metric for stereo matching , 2008, 2008 19th International Conference on Pattern Recognition.

[30]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[31]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[32]  Rama Chellappa,et al.  Nearest-neighbor search algorithms on non-Euclidean manifolds for computer vision applications , 2010, ICVGIP '10.

[33]  Lawrence Cayton,et al.  Fast nearest neighbor retrieval for bregman divergences , 2008, ICML '08.

[34]  Gene H. Golub,et al.  Matrix computations , 1983 .

[35]  Daniel Boley,et al.  Symmetrized Bregman Divergences and Metrics , 2009 .