Hydroiodic Acid Additive Enhanced the Performance and Stability of PbS-QDs Solar Cells via Suppressing Hydroxyl Ligand

[1]  Hua Zhang,et al.  Wet-Chemical Synthesis and Applications of Semiconductor Nanomaterial-Based Epitaxial Heterostructures , 2019, Nano-Micro Letters.

[2]  Jianlong Zhao,et al.  Rapid Isolation and Multiplexed Detection of Exosome Tumor Markers Via Queued Beads Combined with Quantum Dots in a Microarray , 2019, Nano-micro letters.

[3]  Andrew H. Proppe,et al.  Lattice anchoring stabilizes solution-processed semiconductors , 2019, Nature.

[4]  Andrew H. Proppe,et al.  Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. , 2018, Nano letters.

[5]  G. Conibeer,et al.  Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping , 2018 .

[6]  M. Loi,et al.  In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering , 2018, Advanced materials.

[7]  Andrew H. Proppe,et al.  Enhanced Open‐Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity‐Controlled Solution‐Phase Ligand Exchange , 2017, Advanced materials.

[8]  Jiang Tang,et al.  Low-temperature-processed SnO2–Cl for efficient PbS quantum-dot solar cells via defect passivation , 2017 .

[9]  Ahmad R. Kirmani,et al.  Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaics , 2017 .

[10]  G. Galli,et al.  Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification , 2017, Nature Communications.

[11]  S. Jang,et al.  High‐Efficiency Photovoltaic Devices using Trap‐Controlled Quantum‐Dot Ink prepared via Phase‐Transfer Exchange , 2017, Advanced materials.

[12]  Liang Gao,et al.  Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer , 2017, Nature Energy.

[13]  Grigorios Itskos,et al.  Suppressing Deep Traps in PbS Colloidal Quantum Dots via Facile Iodide Substitutional Doping for Solar Cells with Efficiency >10% , 2017 .

[14]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[15]  Jiang Tang,et al.  Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer , 2017, Nano-Micro Letters.

[16]  Edward H. Sargent,et al.  Solution-processed semiconductors for next-generation photodetectors , 2017 .

[17]  R. Compton,et al.  Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics. , 2016, ACS applied materials & interfaces.

[18]  Oleksandr Voznyy,et al.  10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. , 2016, Nano letters.

[19]  O. Voznyy,et al.  Double‐Sided Junctions Enable High‐Performance Colloidal‐Quantum‐Dot Photovoltaics , 2016, Advanced materials.

[20]  Gerasimos Konstantatos,et al.  The role of surface passivation for efficient and photostable PbS quantum dot solar cells , 2016, Nature Energy.

[21]  V. Bulović,et al.  Photovoltaic Performance of PbS Quantum Dots Treated with Metal Salts. , 2016, ACS nano.

[22]  Illan J. Kramer,et al.  Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance , 2016, Advanced materials.

[23]  O. Voznyy,et al.  Solar cells based on inks of n-type colloidal quantum dots. , 2014, ACS nano.

[24]  N. Mathews,et al.  Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface , 2014 .

[25]  Aram Amassian,et al.  Air-stable n-type colloidal quantum dot solids. , 2014, Nature materials.

[26]  Noah D Bronstein,et al.  Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid , 2014, Science.

[27]  Moungi G. Bawendi,et al.  Improved performance and stability in quantum dot solar cells through band alignment engineering , 2014, Nature materials.

[28]  O. Voznyy,et al.  Doping Control Via Molecularly Engineered Surface Ligand Coordination , 2013, Advanced materials.

[29]  Yang Yang,et al.  The Role of Sulfur in Solution‐Processed Cu2ZnSn(S,Se)4 and its Effect on Defect Properties , 2013 .

[30]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[31]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[32]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.

[33]  Moungi G Bawendi,et al.  Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. , 2011, Nano letters.

[34]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .