Down-scaling of resistive switching to nanoscale using porous anodic alumina membranes

An advanced approach for resistive switching memory cells based on porous anodic alumina (Al2O3) membranes is reported. The effective resistive switching resulting in 6 orders of magnitude difference in resistivity between “on” and “off” states of the cell is achieved by specific electronic and ionic interaction between Ag nanowires filled in the membrane and an ionic conductor (AgxAsS2) deposited on the membrane by thermal evaporation. This easy and robust approach can be exploited for deposition of other ionic conductors for novel types of memories.

[1]  M. Itoh,et al.  Optical and electrical properties of Ag-As-S glasses , 1995 .

[2]  Angela B. Seddon,et al.  Chalcogenide glasses : a review of their preparation, properties and applications , 1995 .

[3]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[4]  T. Wágner,et al.  The preparation of the Agx (As0.33S0.67)100-x amorphous films by optically-induced solid state reaction and the films properties , 2001 .

[5]  Ralf B. Wehrspohn,et al.  Highly ordered monocrystalline silver nanowire arrays , 2002 .

[6]  Maria Mitkova,et al.  Information storage using nanoscale electrodeposition of metal in solid electrolytes , 2003 .

[7]  T. Wágner,et al.  Ag doped chalcogenide glasses and their applications , 2003 .

[8]  Hongyuan Chen,et al.  Photochemical synthesis of CdSe and PbSe nanowire arrays on a porous aluminum oxide template , 2004 .

[9]  J. Lee,et al.  Field‐Dependent Growth Patterns of Metals Electroplated in Nanoporous Alumina Membranes , 2004 .

[10]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[11]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[12]  T. Hasegawa,et al.  Ionic-electronic conductor nanostructures: template-confined growth and nonlinear electrical transport. , 2005, Small.

[13]  T. Wágner,et al.  Selective wet-etching of undoped and silver photodoped amorphous thin films of chalcogenide glasses in inorganic alkaline solutions , 2006 .

[14]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[15]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[16]  S. Menzel,et al.  Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems , 2007 .

[17]  T. Hasegawa,et al.  Resistance switching of an individual Ag2S/Ag nanowire heterostructure , 2007 .

[18]  Martin Moskovits,et al.  Fe Nanowires in Nanoporous Alumina: Geometric Effect versus Influence of Pore Walls , 2008 .

[19]  T. Fang,et al.  Nanomechanical and surface behavior of polydimethylsiloxane-filled nanoporous anodic alumina , 2009 .

[20]  Yidong Xia,et al.  Bipolar resistive switching performance of the nonvolatile memory cells based on (AgI)0.2(Ag2MoO4)0.8 solid electrolyte films , 2009 .

[21]  Rainer Waser,et al.  Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. , 2009, Physical chemistry chemical physics : PCCP.

[22]  R. Waser,et al.  Resistively switching Pt/spin-on glass/Ag nanocells for non-volatile memories fabricated with UV nanoimprint lithography , 2009 .

[23]  J. Kolář,et al.  Conductivity in Ag–As–S(Se, Te) chalcogenide glasses , 2010 .

[24]  Zongliang Huo,et al.  Low-Power and Highly Uniform Switching in $ \hbox{ZrO}_{2}$-Based ReRAM With a Cu Nanocrystal Insertion Layer , 2010, IEEE Electron Device Letters.

[25]  T. Hasegawa,et al.  Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.

[26]  J. Kolář,et al.  Phase Separation in Chalcogenide Glasses: The System AgAsSSe , 2011 .

[27]  F. Wang,et al.  The effects of active layer thickness on Programmable Metallization Cell based on Ag–Ge–S , 2011 .

[28]  Massimiliano Di Ventra,et al.  Memory materials: a unifying description , 2011 .

[29]  Masakazu Aono,et al.  A Polymer‐Electrolyte‐Based Atomic Switch , 2011 .

[30]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[31]  I. Chochliouros,et al.  Composition-dependent photosensitivity in As-S glasses induced by bandgap light: structural origin by Raman scattering. , 2011, Optics letters.

[32]  T. Chin,et al.  Improvement of resistive switching in NiO-based nanowires by inserting Pt layers , 2012 .

[33]  Jang‐Sik Lee,et al.  Highly scalable resistive switching memory cells using pore-size-controlled nanoporous alumina templates , 2012 .

[34]  Masakazu Aono,et al.  Oxygen migration process in the interfaces during bipolar resistance switching behavior of WO3−x-based nanoionics devices , 2012 .

[35]  Daniele Ielmini,et al.  Nanowire-based resistive switching memories: devices, operation and scaling , 2013 .

[36]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[37]  G. Tallarida,et al.  Engineered fabrication of ordered arrays of Au–NiO–Au nanowires , 2013, Nanotechnology.

[38]  X. T. Zhang,et al.  Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters. , 2013, Nanoscale.

[39]  Rainer Waser,et al.  Preparation and characterization of GeSx thin-films for resistive switching memories☆ , 2013 .