Monotone Descent Path Queries on Dynamic Terrains

[1]  Günter Rote,et al.  Simple and optimal output-sensitive construction of contour trees using monotone paths , 2005, Comput. Geom..

[2]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[3]  Judea Pearl,et al.  The recovery of causal poly-trees from statistical data , 1987, Int. J. Approx. Reason..

[4]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[5]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[6]  Katherine J. Lai,et al.  Complexity of union-split-find problems , 2008 .

[7]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[8]  Jack Snoeyink,et al.  Implementing time-varying contour trees , 2005, Symposium on Computational Geometry.

[9]  Mark de Berg,et al.  Trekking in the Alps Without Freezing or Getting Tired , 1993, Algorithmica.

[10]  Valerio Pascucci,et al.  Time-varying Reeb graphs for continuous space-time data , 2008, Comput. Geom..

[11]  Sandip Das,et al.  Shortest monotone descent path problem in polyhedral terrain , 2005, Comput. Geom..

[12]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[13]  Steven Skiena,et al.  Lowest common ancestors in trees and directed acyclic graphs , 2005, J. Algorithms.

[14]  Alexander Pasko,et al.  Constructive Heterogeneous Object Modeling Using Signed Approximate Real Distance Functions , 2006, J. Comput. Inf. Sci. Eng..

[15]  Erik D. Demaine,et al.  Lower bounds for dynamic connectivity , 2004, STOC '04.

[16]  Richard Cole,et al.  Dynamic LCA queries on trees , 1999, SODA '99.

[17]  Debasish Dutta,et al.  Multi-Direction Slicing for Layered Manufacturing , 2001, J. Comput. Inf. Sci. Eng..

[18]  Yutaka Ohtake,et al.  Creeping Contours: A Multilabel Image Segmentation Method for Extracting Boundary Surfaces of Parts in Volumetric Images , 2011, J. Comput. Inf. Sci. Eng..

[19]  Stephen Alstrup,et al.  Nearest Common Ancestors: A Survey and a New Algorithm for a Distributed Environment , 2004, Theory of Computing Systems.

[20]  Matti Nykänen,et al.  Finding Lowest Common Ancestors in Arbitrarily Directed Trees , 1994, Inf. Process. Lett..

[21]  Xiaoping Qian,et al.  Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces , 2008, J. Comput. Inf. Sci. Eng..

[22]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[23]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[24]  Ajay Joneja,et al.  On Minimum Link Monotone Path Problems , 2011, J. Comput. Inf. Sci. Eng..

[25]  Johannes Nowak,et al.  Fast Lowest Common Ancestor Computations in Dags , 2007, ESA.

[26]  Jack Snoeyink,et al.  Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree , 2010, Comput. Geom..

[27]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[28]  Ajay Joneja,et al.  Optimal uniformly monotone partitioning of polygons with holes , 2012, Comput. Aided Des..

[29]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[30]  Uzi Vishkin,et al.  Finding Level-Ancestors in Trees , 1994, J. Comput. Syst. Sci..

[31]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[32]  Valerio Pascucci On the topology of the level sets of a scalar field , 2001, CCCG.

[33]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.