A one-mesh method for the cell-centered discretization of sliding
暂无分享,去创建一个
[1] Grégoire Allaire,et al. Numerical analysis and optimization : an introduction to mathematical modelling and numerical simulation , 2007 .
[2] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[3] Mark L. Wilkins,et al. Computer Simulation of Dynamic Phenomena , 1999 .
[4] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[5] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[6] Bruno Després,et al. A new method to introduce constraints in cell-centered Lagrangian schemes , 2013 .
[7] Raphaël Loubère,et al. Enhancement of Lagrangian slide lines as a combined force and velocity boundary condition , 2013 .
[8] Bruno Després,et al. A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes , 2012, J. Comput. Phys..
[9] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[10] A. S. Dawes. A three‐dimensional contact algorithm for sliding surfaces , 2003 .
[11] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[12] N. Bourago,et al. A review of contact algorithms , 2005 .
[13] Shaker A. Meguid,et al. On the modelling of smooth contact surfaces using cubic splines , 2001 .
[14] A. Curnier,et al. A finite element method for a class of contact-impact problems , 1976 .
[15] J. Oden,et al. A numerical analysis of a class of contact problems with friction in elastostatics , 1982 .
[16] Pierre-Henri Maire,et al. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..
[17] Patrick Hild,et al. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.
[18] Raphaël Loubère,et al. The force/work differencing of exceptional points in the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..
[19] Shaker A. Meguid,et al. UPDATED LAGRANGIAN FORMULATION OF CONTACT PROBLEMS USING VARIATIONAL INEQUALITIES , 1997 .
[20] R. Glowinski,et al. Computing Methods in Applied Sciences and Engineering , 1974 .
[21] Nathaniel R. Morgan,et al. An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..
[22] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[23] Bruno Després,et al. Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .
[24] Faker Ben Belgacem,et al. The mortar finite element method for contact problems , 1998 .
[25] E. J. Caramana,et al. The implementation of slide lines as a combined force and velocity boundary condition , 2009, J. Comput. Phys..