A one-mesh method for the cell-centered discretization of sliding

Abstract A new method is described to treat slide lines in cell-centered lagrangian schemes for the modeling of sliding problems between two fluids in the framework of compressible hydrodynamics. The method is an extension of the one proposed in Clair et al. (2013) [1] and is conservative in momentum and total energy. We illustrate our method, which is based on the minimization of an objective function over a specific set that models the sliding constraint, by several basic problems.

[1]  Grégoire Allaire,et al.  Numerical analysis and optimization : an introduction to mathematical modelling and numerical simulation , 2007 .

[2]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[3]  Mark L. Wilkins,et al.  Computer Simulation of Dynamic Phenomena , 1999 .

[4]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[5]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[6]  Bruno Després,et al.  A new method to introduce constraints in cell-centered Lagrangian schemes , 2013 .

[7]  Raphaël Loubère,et al.  Enhancement of Lagrangian slide lines as a combined force and velocity boundary condition , 2013 .

[8]  Bruno Després,et al.  A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes , 2012, J. Comput. Phys..

[9]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[10]  A. S. Dawes A three‐dimensional contact algorithm for sliding surfaces , 2003 .

[11]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[12]  N. Bourago,et al.  A review of contact algorithms , 2005 .

[13]  Shaker A. Meguid,et al.  On the modelling of smooth contact surfaces using cubic splines , 2001 .

[14]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[15]  J. Oden,et al.  A numerical analysis of a class of contact problems with friction in elastostatics , 1982 .

[16]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[17]  Patrick Hild,et al.  A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.

[18]  Raphaël Loubère,et al.  The force/work differencing of exceptional points in the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..

[19]  Shaker A. Meguid,et al.  UPDATED LAGRANGIAN FORMULATION OF CONTACT PROBLEMS USING VARIATIONAL INEQUALITIES , 1997 .

[20]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[21]  Nathaniel R. Morgan,et al.  An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..

[22]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[23]  Bruno Després,et al.  Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .

[24]  Faker Ben Belgacem,et al.  The mortar finite element method for contact problems , 1998 .

[25]  E. J. Caramana,et al.  The implementation of slide lines as a combined force and velocity boundary condition , 2009, J. Comput. Phys..