Mathematical methods for diffusion MRI processing

In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI).

[1]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[2]  David E. Breen,et al.  Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data , 2003, J. Electronic Imaging.

[3]  D. Le Bihan,et al.  Artifacts and pitfalls in diffusion MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[4]  Suyash P. Awate,et al.  A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction. , 2007, IEEE transactions on medical imaging.

[5]  R. Deriche,et al.  Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications , 2006, Magnetic resonance in medicine.

[6]  Borivoj Vojnovic,et al.  Towards high-throughput FLIM for protein-protein interaction screening of live cells and tissue microarrays , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[7]  Denis Le Bihan,et al.  Imagerie de diffusion in-vivo par résonance magnétique nucléaire , 1985 .

[8]  Peter J. Basser,et al.  A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI , 2003, IEEE Transactions on Medical Imaging.

[9]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[10]  Michel Osteaux,et al.  Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[11]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[12]  V. Wedeen,et al.  Fiber crossing in human brain depicted with diffusion tensor MR imaging. , 2000, Radiology.

[13]  N. Ayache,et al.  Clinical DT-MRI Estimation, Smoothing, and Fiber Tracking With Log-Euclidean Metrics , 2007 .

[14]  Jean-Philippe Thiran,et al.  Fibertract segmentation in position orientation space from high angular resolution diffusion MRI , 2006, NeuroImage.

[15]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[16]  Naftali Tishby,et al.  Data Clustering by Markovian Relaxation and the Information Bottleneck Method , 2000, NIPS.

[17]  Rachid Deriche,et al.  Deterministic and Probabilistic Q-Ball Tractography: from Diffusion to Sharp Fiber Distributions , 2007 .

[18]  Alan Connelly,et al.  Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm , 2003, NeuroImage.

[19]  M C Bushell,et al.  PRELIMINARY COMMUNICATION: The spatial mapping of translational diffusion coefficients by the NMR imaging technique , 1985 .

[20]  Xavier Bresson,et al.  A level set method for segmentation of the thalamus and its nuclei in DT-MRI , 2007, Signal Process..

[21]  Xavier Bresson,et al.  White matter fiber tract segmentation in DT-MRI using geometric flows , 2005, Medical Image Anal..

[22]  Rachid Deriche,et al.  Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI , 2008, NeuroImage.

[23]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[25]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[26]  Christophe Lenglet,et al.  On the non-uniform complexity of brain connectivity , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[27]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[28]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[29]  P. Batchelor,et al.  International Society for Magnetic Resonance in Medicine , 1997 .

[30]  Rachid Deriche,et al.  Control Theory and Fast Marching Techniques for Brain Connectivity Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  J. Tsuruda,et al.  Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. , 1990, Radiology.

[32]  Baba C. Vemuri,et al.  Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures , 2006, ECCV.

[33]  Osamu Abe,et al.  Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner , 2006, Radiation Medicine.

[34]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[35]  E. Marom 4211 Artifacts and pitfalls in PET/CT , 2006 .

[36]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[37]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[38]  Lawrence H. Staib,et al.  White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging , 2005, Medical Image Anal..

[39]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[40]  Frans A. J. Verstraten,et al.  Probabilistic Inference on Q-ball Imaging Data , 2007, IEEE Transactions on Medical Imaging.

[41]  J. M. Oller,et al.  AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL , 1991 .

[42]  Guillermo Sapiro,et al.  Translated Poisson Mixture Model for Stratification Learning , 2008, International Journal of Computer Vision.

[43]  Xavier Bresson,et al.  Representing Diffusion MRI in 5-D Simplifies Regularization and Segmentation of White Matter Tracts , 2007, IEEE Transactions on Medical Imaging.

[44]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[45]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[46]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[47]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[48]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[49]  P. Callaghan,et al.  RAPID COMMUNICATION: NMR microscopy of dynamic displacements: k-space and q-space imaging , 1988 .

[50]  David E. Breen,et al.  Level Set Modeling and Segmentation of DT-MRI Brain Data , 2001 .

[51]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[53]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[54]  Peter Desain,et al.  Society for Neuroscience Meeting , 2010 .

[55]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[56]  Carl-Fredrik Westin,et al.  Segmentation of Thalamic Nuclei from DTI Using Spectral Clustering , 2006, MICCAI.

[57]  Simon J. Doran,et al.  NMR imaging of fluids in porous solids , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[58]  Heinrich Lanfermann,et al.  Diffusion tensor tracking of fornix infarction , 2007, Journal of Neurology, Neurosurgery & Psychiatry.

[59]  Rachid Deriche,et al.  High Angular Resolution Diffusion MRI Segmentation Using Region-Based Statistical Surface Evolution , 2009, Journal of Mathematical Imaging and Vision.

[60]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[61]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[62]  Rachid Deriche,et al.  Deterministic and Probabilistic Q-Ball Tractography: from Diffusion to Sharp Fiber Distribution , 2007 .

[63]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Zhizhou Wang,et al.  Tensor Field Segmentation Using Region Based Active Contour Model , 2004, ECCV.

[65]  David S Tuch,et al.  Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging , 2003, NeuroImage.

[66]  D G Gadian,et al.  Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations , 2002, Magnetic resonance in medicine.

[67]  C. Atkinson Rao's distance measure , 1981 .

[68]  Yogesh Rathi,et al.  A Graph Cut Approach to Image Segmentation in Tensor Space , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Zhizhou Wang,et al.  DTI segmentation using an information theoretic tensor dissimilarity measure , 2005, IEEE Transactions on Medical Imaging.

[70]  Peter Savadjiev,et al.  3D curve inference for diffusion MRI regularization and fibre tractography , 2006, Medical Image Anal..

[71]  D. Tuch,et al.  Boosting the sampling efficiency of q‐ball imaging using multiple wavevector fusion , 2007, Magnetic resonance in medicine.

[72]  Emmanuel Prados eprados,et al.  Control Theory and Fast Marching Methods for Brain Connectivity Mapping , 2022 .

[73]  Baba C. Vemuri,et al.  A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI , 2007, IEEE Transactions on Medical Imaging.

[74]  Milan Sonka,et al.  Computer Vision Approaches to Medical Image Analysis , 2008 .

[75]  Ghassan Hamarneh,et al.  DT-MRI segmentation using graph cuts , 2007, SPIE Medical Imaging.

[76]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[77]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[78]  J. Weickert,et al.  Level-Set Methods for Tensor-Valued Images , 2003 .

[79]  Rachid Deriche,et al.  DTI segmentation by statistical surface evolution , 2006, IEEE Transactions on Medical Imaging.

[80]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[81]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[82]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[83]  Klaus-Dietmarmerboldt Self-Diffusion NMR Imaging Using Stimulated Echoes , 2004 .

[84]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[85]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[86]  Rachid Deriche,et al.  Diffusion Maps Clustering for Magnetic Resonance Q-Ball Imaging Segmentation , 2008, Int. J. Biomed. Imaging.

[87]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[88]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.