Beyond Plug and Pray: Context Sensitivity and in silico Design of Artificial Neomycin Riboswitches

Gene regulation in prokaryotes often depends on RNA elements such as riboswitches or RNA thermometers located in the 5’ untranslated region of mRNA. Rearrangements of the RNA structure in response, e. g., to the binding of small molecules or ions control translational initiation or premature termination of transcription and thus mRNA expression. Such structural responses are amenable to computational modeling, making it possible to rationally design synthetic riboswitches for a given aptamer. Starting from an artificial aptamer, we construct the first synthetic transcriptional riboswitches that respond to the antibiotic neomycin. We show that the switching behavior in vivo critically depends not only on the sequence of the riboswitch itself, but also on its sequence context. We therefore developed in silico methods to predict the impact of the context, making it possible to adapt the design and to rescue non-functional riboswitches. We furthermore analyze the influence of 5’ hairpins with varying stability on neomycin riboswitch activity. Our data highlight the limitations of a simple plug-and-play approach in the design of complex genetic circuits and demonstrate that detailed computational models significantly simplify, improve, and automate the design of transcriptional circuits. Our design software is available under a free license on Github.1

[1]  Peter F. Stadler,et al.  Assessing the Quality of Cotranscriptional Folding Simulations , 2020, bioRxiv.

[2]  Lydia M Contreras,et al.  Synthetic Biology of Small RNAs and Riboswitches , 2018, Microbiology spectrum.

[3]  Jörg Stelling,et al.  Computational design of biological circuits: putting parts into context , 2017 .

[4]  Mario Mörl,et al.  Synthetic Riboswitches: From Plug and Pray toward Plug and Play. , 2017, Biochemistry.

[5]  Andreas Kulik,et al.  AGOS: A Plug-and-Play Method for the Assembly of Artificial Gene Operons into Functional Biosynthetic Gene Clusters. , 2017, ACS synthetic biology.

[6]  Peter F. Stadler,et al.  Applicability of a computational design approach for synthetic riboswitches , 2016, Nucleic acids research.

[7]  R. Landick,et al.  Mechanisms of Bacterial Transcription Termination: All Good Things Must End. , 2016, Annual review of biochemistry.

[8]  P. Stadler,et al.  RNA folding with hard and soft constraints , 2016, Algorithms for Molecular Biology.

[9]  O. Skovgaard,et al.  Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites , 2015, G3: Genes, Genomes, Genetics.

[10]  J. Cronan,et al.  A series of medium and high copy number arabinose-inducible Escherichia coli expression vectors compatible with pBR322 and pACYC184. , 2015, Plasmid.

[11]  Ivo L. Hofacker,et al.  Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams , 2015, Bioinform..

[12]  K. Hall,et al.  Effect of loop composition on the stability and folding kinetics of RNA hairpins with large loops. , 2015, Biochemistry.

[13]  Ronny Lorenz,et al.  Design criteria for synthetic riboswitches acting on transcription , 2015, RNA biology.

[14]  F. Narberhaus,et al.  Temperature-driven differential gene expression by RNA thermosensors. , 2014, Biochimica et biophysica acta.

[15]  C. Suresh,et al.  A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. , 2014, The journal of physical chemistry. A.

[16]  Alexander Schug,et al.  Differences between cotranscriptional and free riboswitch folding , 2013, Nucleic acids research.

[17]  Irmtraud M. Meyer,et al.  On the importance of cotranscriptional RNA structure formation , 2013, RNA.

[18]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[19]  P. Stadler,et al.  De novo design of a synthetic riboswitch that regulates transcription termination , 2012, Nucleic acids research.

[20]  R. Breaker Riboswitches and the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[21]  Tamar Schlick,et al.  Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function , 2012, PLoS Comput. Biol..

[22]  K. Reinert Complete suboptimal folding of RNA and the stability of secondary structures , Biopolymers , 2012 .

[23]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[24]  Robert Landick,et al.  Bacterial transcription terminators: the RNA 3'-end chronicles. , 2011, Journal of molecular biology.

[25]  Rainer Breitling,et al.  Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms , 2011, Nature Reviews Microbiology.

[26]  Beatrix Suess,et al.  Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity , 2010, Nucleic acids research.

[27]  Michael T. Wolfinger,et al.  BarMap: RNA folding on dynamic energy landscapes. , 2010, RNA.

[28]  David H. Mathews,et al.  NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure , 2009, Nucleic Acids Res..

[29]  Srividya Mohan,et al.  Mechanism of RNA double helix-propagation at atomic resolution. , 2009, The journal of physical chemistry. B.

[30]  Eric D Brown,et al.  A FACS‐Based Approach to Engineering Artificial Riboswitches , 2008, Chembiochem : a European journal of chemical biology.

[31]  Michael T. Wolfinger,et al.  Folding kinetics of large RNAs. , 2008, Journal of molecular biology.

[32]  P. Bevilacqua,et al.  Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. , 2008, Annual review of physical chemistry.

[33]  C. Koehrer,et al.  The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. , 2008, Methods.

[34]  H. Čelešnik,et al.  The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal , 2008, Nature.

[35]  Beatrix Suess,et al.  Screening for engineered neomycin riboswitches that control translation initiation. , 2007, RNA.

[36]  Adam Roth,et al.  A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain , 2007, Nature Structural &Molecular Biology.

[37]  Alain Xayaphoummine,et al.  Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots , 2005, Nucleic Acids Res..

[38]  Ali Nahvi,et al.  Genetic control by a metabolite binding mRNA. , 2002, Chemistry & biology.

[39]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[40]  J. Belasco,et al.  Regions of RNase E Important for 5′-End-Dependent RNA Cleavage and Autoregulated Synthesis , 2000, Journal of bacteriology.

[41]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[42]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[43]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[44]  G. Mackie Ribonuclease E is a 5′-end-dependent endonuclease , 1998, Nature.

[45]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[46]  K. Jensen,et al.  The RNA chain elongation rate in Escherichia coli depends on the growth rate , 1994, Journal of bacteriology.

[47]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[48]  M P Deutscher,et al.  A uridine-rich sequence required for translation of prokaryotic mRNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Belasco,et al.  A 5'-terminal stem-loop structure can stabilize mRNA in Escherichia coli. , 1992, Genes & development.

[50]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[51]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[52]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[53]  H. Bremer,et al.  Temperature dependence of RNA synthesis parameters in Escherichia coli , 1982, Journal of bacteriology.

[54]  O. Uhlenbeck,et al.  Thermodynamics and kinetics of the helix‐coil transition of oligomers containing GC base pairs , 1973 .