Chaos in a quantum rotor model

We study scrambling in a model consisting of a number $N$ of $M$-component quantum rotors coupled by random infinite-range interactions. This model is known to have both a paramagnetic phase and a spin glass phase separated by second order phase transition. We calculate in perturbation theory the squared commutator of rotor fields at different sites in the paramagnetic phase, to leading non-trivial order at large $N$ and large $M$. This quantity diagnoses the onset of quantum chaos in this system, and we show that the squared commutator grows exponentially with time, with a Lyapunov exponent proportional to $\frac{1}{M}$. At high temperature, the Lyapunov exponent limits to a value set by the microscopic couplings, while at low temperature, the exponent exhibits a $T^4$ dependence on temperature $T$.

[1]  A. Larkin,et al.  Quasiclassical Method in the Theory of Superconductivity , 1969 .

[2]  Solvable spin glass of quantum rotors. , 1992, Physical review letters.

[3]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[4]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[5]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.

[6]  J. Polchinski,et al.  An apologia for firewalls , 2013, Journal of High Energy Physics.

[7]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[8]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[9]  S. Sachdev Bekenstein-Hawking Entropy and Strange Metals , 2015, 1506.05111.

[10]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[11]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[12]  P. Hayden,et al.  Measuring the scrambling of quantum information , 2016, 1602.06271.

[13]  B. Zeng,et al.  Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator , 2016, 1609.01246.

[14]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[15]  Masaki Tezuka,et al.  Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity , 2016, 1606.02454.

[16]  M. Hafezi,et al.  Measurement of many-body chaos using a quantum clock , 2016, 1607.00079.

[17]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[18]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[19]  D. Stamper-Kurn,et al.  Interferometric Approach to Probing Fast Scrambling , 2016, 1607.01801.

[20]  C. Mendl,et al.  Scrambling and thermalization in a diffusive quantum many-body system , 2016, 1612.02434.

[21]  L. Ioffe,et al.  Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves , 2016, 1609.01251.

[22]  B. Swingle,et al.  Slow scrambling in disordered quantum systems , 2016, 1608.03280.

[23]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[24]  E. Altman,et al.  Semiclassical Theory of Many-Body Quantum Chaos and its Bound , 2017, 1711.04768.

[25]  Nicole Yunger Halpern Jarzynski-like equality for the out-of-time-ordered correlator , 2016, 1609.00015.

[26]  B. Swingle,et al.  Onset of many-body chaos in the $O(N)$ model , 2017, 1703.02545.

[27]  J. Goold,et al.  Thermodynamics of quantum information scrambling. , 2016, Physical review. E.

[28]  Yevgeny Bar Lev,et al.  Information propagation in isolated quantum systems , 2017, 1702.03929.

[29]  B. Swingle,et al.  Quantum Butterfly Effect in Weakly Interacting Diffusive Metals , 2017, 1703.07353.

[30]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[31]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[32]  G. Menezes,et al.  Slow scrambling in sonic black holes , 2017, 1712.05456.

[33]  F. de Juan,et al.  Quantum Holography in a Graphene Flake with an Irregular Boundary. , 2018, Physical review letters.

[34]  Nicole Yunger Halpern,et al.  Resilience of scrambling measurements , 2018, Physical Review A.

[35]  D. Huse,et al.  Velocity-dependent Lyapunov exponents in many-body quantum, semiclassical, and classical chaos , 2018, Physical Review B.

[36]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[37]  C. Ramanathan,et al.  Exploring Localization in Nuclear Spin Chains. , 2016, Physical review letters.

[38]  M. Heyl,et al.  Detecting equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators , 2018 .

[39]  Cheng-Ju Lin,et al.  Out-of-time-ordered correlators in a quantum Ising chain , 2018, 1801.01636.

[40]  Nicole Yunger Halpern,et al.  Quasiprobability behind the out-of-time-ordered correlator , 2017, 1704.01971.

[41]  Nicole Yunger Halpern,et al.  Strengthening weak measurements of qubit out-of-time-order correlators , 2018, Physical Review A.

[42]  B. Gadway,et al.  Exploring quantum signatures of chaos on a Floquet synthetic lattice , 2017, Physical Review A.

[43]  C. Monroe,et al.  Verified quantum information scrambling , 2018, Nature.

[44]  Shenglong Xu,et al.  Accessing scrambling using matrix product operators , 2018, Nature Physics.

[45]  K. Schalm,et al.  Kinetic theory for classical and quantum many-body chaos. , 2018, Physical review. E.

[46]  B. Swingle,et al.  Quantum Lyapunov spectrum , 2018, Journal of High Energy Physics.

[47]  S. Lloyd,et al.  Emergent Prethermalization Signatures in Out-of-Time Ordered Correlations. , 2018, Physical review letters.