Maximum Cardinality 1-Restricted Simple 2-Matchings

A simple 2-matching in a graph is a subgraph all of whose nodes have degree $1$ or $2$. A simple 2-matching is called $k$ -restricted if every connected component has $>k$ edges. We consider the problem of finding a $k$-restricted simple 2-matching with a maximum number of edges, which is a relaxation of the problem of finding a Hamilton cycle in a graph. Our main result is a min-max theorem for the maximum number of edges in a 1-restricted simple 2-matching. We prove this result constructively by presenting a polynomial time algorithm for finding a 1-restricted simple 2-matching with a maximum number of edges.

[1]  William H. Cunningham,et al.  Restricted 2-factor polytopes , 2000, Math. Program..

[2]  Gérard Cornuéjols,et al.  A matching problem with side conditions , 1980, Discret. Math..

[3]  W. T. Tutte A Short Proof of the Factor Theorem for Finite Graphs , 1954, Canadian Journal of Mathematics.

[4]  M. Janata,et al.  A Gallai-Edmonds type theorem for the k-piece packing problem , 2005 .

[5]  Jácint Szabó,et al.  The k‐piece packing problem , 2006, J. Graph Theory.

[6]  Hans-Boris Belck Reguläre Faktoren von Graphen. , 1950 .

[7]  David Hartvigsen,et al.  Finding maximum square-free 2-matchings in bipartite graphs , 2006, J. Comb. Theory B.

[8]  Zoltán Király,et al.  Packing paths of length at least two , 2004, Discret. Math..

[9]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[10]  Mariusz Woźniak Packing of graphs , 1997 .

[11]  W. T. Tutte The Factors of Graphs , 1952, Canadian Journal of Mathematics.

[12]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[13]  Z. Király Restricted t-matchings in Bipartite Graphs , 2009 .

[14]  Yunsun Nam,et al.  Matching theory: subgraphs with degree constraints and other properties , 1994 .

[15]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[16]  Atsushi Kaneko,et al.  A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two , 2003, J. Comb. Theory, Ser. B.

[17]  Laurence A. Wolsey,et al.  An Analysis of Approximations for Finding a Maximum Weight Hamiltonian Circuit , 1979, Oper. Res..

[18]  T. Gallai,et al.  On factorisation of graphs , 1950 .

[19]  Harold N. Gabow,et al.  An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems , 1983, STOC.

[20]  David Hartvigsen 1-restricted Simple 2-matchings: (Extended Abstract) , 2004, Electron. Notes Discret. Math..