ul 2 00 6 Arithmetic on a Distributed-Memory Quantum

We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through “teleported gates” on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor’s algorithm for factoring large numbers efficiently.

[1]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[2]  L. Hollenberg,et al.  Scalable Error Correction in Distributed Ion Trap Computers , 2006, quant-ph/0606226.

[3]  Rodney Van Meter,et al.  Distributed Arithmetic on a Quantum Multicomputer , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[4]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[5]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical review letters.

[6]  J. Johansson,et al.  Vacuum Rabi oscillations in a macroscopic superconducting qubit oscillator system. , 2005, Physical review letters.

[7]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[8]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[9]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2004, Quantum Inf. Comput..

[10]  T. Spiller,et al.  An introduction to quantum information processing: applications and realizations , 2005 .

[11]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[12]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[13]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[14]  Mark Oskin,et al.  An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[15]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[16]  Andrew Steane How to build a 300 bit, 1 Gop quantum computer , 2004 .

[17]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[18]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[19]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[20]  Samuel J. Lomonaco, Jr.,et al.  Distributed quantum computing: a distributed Shor algorithm , 2004, SPIE Defense + Commercial Sensing.

[21]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[22]  D. Matsukevich,et al.  Quantum State Transfer Between Matter and Light , 1999, Science.

[23]  William J. Dally,et al.  Principles and Practices of Interconnection Networks , 2004 .

[24]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[25]  Frederic T. Chong,et al.  The effect of communication costs in solid-state quantum computing architectures , 2003, SPAA '03.

[26]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[27]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[28]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[29]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[31]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[32]  H. Mabuchi,et al.  Programmable logic devices in experimental quantum optics , 2002, quant-ph/0203143.

[33]  T Zhang Experimental Quantum Teleportation of Laser Beams , 2002 .

[34]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[35]  J. Yepez TYPE-II QUANTUM COMPUTERS , 2001 .

[36]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[37]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[38]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[39]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[40]  B. W. Broer,et al.  Spontaneous emission spectrum in double quantum dot devices , 1998, Science.

[41]  D. DiVincenzo Quantum gates and circuits , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Lov K. Grover Quantum Telecomputation , 1997, quant-ph/9704012.

[43]  Ashok V. Krishnamoorthy,et al.  Optically Augmented 3-D Computer: System Technology and Architecture , 1997, J. Parallel Distributed Comput..

[44]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[45]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[46]  J. Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[47]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[48]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[49]  Harvard Scott Hinton,et al.  Design of a terabit free-space photonic backplane for parallel computing , 1995, Proceedings of Second International Workshop on Massively Parallel Processing Using Optical Interconnections.

[50]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[51]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[52]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[53]  Charles L. Seitz,et al.  Multicomputers: message-passing concurrent computers , 1988, Computer.