Vectorization and multitasking of nonlinear network programming algorithms

Vector supercomputers are designed with two levels of parallelism in order to achieved computational efficiency: low level parallelism through vector operations and high level parallelism with multiple independent processors. These innovations have a significant impact on the development of algorithms for network optimization.In this paper a framework for the vectorization and multitasking of optimization software is developed. It is then applied on the primal truncated Newton algorithm for nonlinear generalized network problems. The vectorization and multitasking of the algorithm is discussed and illustrated with computational experiments with the software system NLPNETG on the CRAY series of vector multiprocessors.

[1]  S A Zenios SEQUENTIAL AND PARALLEL ALGORITHMS FOR CONVEX GENERALIZED NETWORK PROBLEMS AND RELATED APPLICATIONS , 1986 .

[2]  Stavros A. Zenios,et al.  Parallel Numerical Optimization: Current Status and an Annotated Bibliography , 1989, INFORMS J. Comput..

[3]  M. D. Chang,et al.  A parallel algorithm for generalized networks , 1988 .

[4]  Jack Dongarra,et al.  Advanced Architecture Computers , 1989 .

[5]  Stavros A. Zenios,et al.  Nonlinear network optimization on a massively parallel connection machine , 1988 .

[6]  Ingrid Y. Bucher The computational speed of supercomputers , 1983, SIGMETRICS '83.

[7]  John M. Mulvey,et al.  A distributed algorithm for convex network optimization problems , 1988, Parallel Comput..

[8]  Gerald G. Brown,et al.  Solving Generalized Networks , 1984 .

[9]  Richard H. Byrd,et al.  Concurrent Stochastic Methods for Global Optimization ; CU-CS-338-86 , 1986 .

[10]  D. Bertsekas,et al.  Distributed asynchronous relaxation methods for convex network flow problems , 1987 .

[11]  Freerk A. Lootsma,et al.  State-of-the-art in parallel nonlinear optimization , 1988, Parallel Comput..

[12]  Jack J. Dongarra,et al.  Unrolling loops in fortran , 1979, Softw. Pract. Exp..

[13]  John M. Mulvey,et al.  Solving Large Scale Generalized Networks , 1985 .

[14]  Alexander H. G. Rinnooy Kan,et al.  Concurrent stochastic methods for global optimization , 1990, Math. Program..

[15]  John M. Mulvey,et al.  Nonlinear programming on generalized networks , 1987, TOMS.

[16]  O. Mangasarian,et al.  Parallel successive overrelaxation methods for symmetric linear complementarity problems and linear programs , 1987 .

[17]  Robert B. Schnabel,et al.  Concurrent Function Evaluations in Local and Global Optimization ; CU-CS-345-86 , 1987 .

[18]  Kai Hwang,et al.  Supercomputers - Design and Applications , 1984 .

[19]  B L Buzbee,et al.  Perspectives on Supercomputing , 1985, Science.

[20]  John M. Mulvey,et al.  Nonlinear Network Programming on Vector Supercomputers: A Study on the CRAY X-MP , 1986, Oper. Res..

[21]  Janusz S. Kowalik High-Speed Computation , 1984 .

[22]  John L. Larson Multitasking on the Cray X-MP-2 Multiprocessor , 1984, Computer.

[23]  Fred Glover,et al.  Generalized Networks: A Fundamental Computer-Based Planning Tool , 1978 .

[24]  J. Pang,et al.  Two-stage parallel iterative methods for the symmetric linear complementarity problem , 1988 .