Small-World Networks and RNA Secondary Structures

Let \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $${{ \cal S}_n}$$ \end{document} denote the network of all RNA secondary structures of length n, in which undirected edges exist between structures s, t such that t is obtained from s by the addition, removal, or shift of a single base pair. Using context-free grammars, generating functions, and complex analysis, we show that the asymptotic average degree is \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$O ( n )$$ \end{document} , and that the asymptotic clustering coefficient is \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$O ( 1 / n )$$ \end{document} , from which it follows that the family \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $${{ \cal S}_n}$$ \end{document} , \documentclass{aastex}\usepackage{amsbsy}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{bm}\usepackage{mathrsfs}\usepackage{pifont}\usepackage{stmaryrd}\usepackage{textcomp}\usepackage{portland, xspace}\usepackage{amsmath, amsxtra}\usepackage{upgreek}\pagestyle{empty}\DeclareMathSizes{10}{9}{7}{6}\begin{document} $$n = 1 , 2 , 3 , \ldots$$ \end{document} of secondary structure networks is not small world.

[1]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[2]  Peter Clote,et al.  Network Properties of the Ensemble of RNA Structures , 2015, PloS one.

[3]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[5]  Vijay S Pande,et al.  Protein folded states are kinetic hubs , 2010, Proceedings of the National Academy of Sciences.

[6]  Stefan Wuchty,et al.  Small worlds in RNA structures. , 2003, Nucleic acids research.

[7]  P. Clote Asymptotic connectivity for the network of RNA secondary structures , 2015, 1508.03815.

[8]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[9]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[10]  Robert D. Finn,et al.  Rfam 12.0: updates to the RNA families database , 2014, Nucleic Acids Res..

[11]  Robert D. Finn,et al.  Rfam: Wikipedia, clans and the “decimal” release , 2010, Nucleic Acids Res..

[12]  Rama Cont,et al.  Small-world graphs: characterization and alternative constructions , 2008, Advances in Applied Probability.

[13]  Peter Clote,et al.  Asymptotics of RNA Shapes , 2008, J. Comput. Biol..

[14]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[15]  L. Amaral,et al.  Small-world networks and the conformation space of a short lattice polymer chain , 2000, cond-mat/0004380.

[16]  D Pörschke,et al.  Model calculations on the kinetics of oligonucleotide double helix coil transitions. Evidence for a fast chain sliding reaction. , 1974, Biophysical chemistry.

[17]  E. Siggia,et al.  Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Peter Clote,et al.  Expected degree for RNA secondary structure networks , 2014, J. Comput. Chem..

[19]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.