Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space

[1]  R. Tweedie,et al.  R-theory for Markov chains on a topological state Space. II , 1976 .

[2]  R. Tweedie,et al.  R -Theory for Markov Chains on a Topological State Space I , 1975 .

[3]  R. Tweedie Sufficient conditions for regularity, recurrence and ergodicity of Markov processes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  R. Tweedie $R$-Theory for Markov Chains on a General State Space II: $r$-Subinvariant Measures for $r$-Transient Chains , 1974 .

[5]  R. Tweedie $R$-Theory for Markov Chains on a General State Space I: Solidarity Properties and $R$-Recurrent Chains , 1974 .

[6]  J. R. Callahan A queue with waiting time dependent service times , 1973 .

[7]  E. Seneta,et al.  Computation of the stationary distribution of an infinite Markov matrix , 1973, Bulletin of the Australian Mathematical Society.

[8]  Carl M. Harris,et al.  A Note on Feedback Queues with Bulk Service , 1972, JACM.

[9]  Peter Kolesar,et al.  Multilevel Bulk Service Queues , 1972, Oper. Res..

[10]  S. Orey Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities , 1971 .

[11]  A. G. Pakes,et al.  Some Conditions for Ergodicity and Recurrence of Markov Chains , 1969, Oper. Res..

[12]  Boris Gnedenko,et al.  Introduction to queueing theory , 1968 .

[13]  B. Jamison,et al.  Contributions to Doeblin's theory of Markov processes , 1967 .

[14]  H. D. Miller Geometric ergodicity in a class of denumerable Markov chains , 1966 .

[15]  Z. Šidák Classification of Markov chains with a general state space , 1966 .

[16]  J. Kingman The ergodic behaviour of random walks , 1961 .

[17]  J. Hammersley,et al.  On non-dissipative Markov chains , 1957 .

[18]  M. D. Moustafa,et al.  Input-Output Markov Processes 1) , 1957 .

[19]  F. G. Foster On the Stochastic Matrices Associated with Certain Queuing Processes , 1953 .

[20]  J. Doob Stochastic processes , 1953 .

[21]  D. V. Lindley,et al.  The theory of queues with a single server , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  David G. Kendall,et al.  On non-dissipative Markoff chains with an enumerable infinity of states , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  F. G. Foster Markoff chains with an enumerable number of states and a class of cascade processes , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.