The role of blood vessels in high-resolution volume conductor head modeling of EEG

[1]  Matthias Dümpelmann,et al.  Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis , 2015, PloS one.

[2]  D. Kaufer,et al.  Blood-brain barrier in health and disease. , 2015, Seminars in cell & developmental biology.

[3]  Thomas R. Knösche,et al.  A guideline for head volume conductor modeling in EEG and MEG , 2014, NeuroImage.

[4]  Tonio Ball,et al.  Visualization of the amygdalo–hippocampal border and its structural variability by 7T and 3T magnetic resonance imaging , 2014, Human brain mapping.

[5]  Jens Haueisen,et al.  Changes in scalp potentials and spatial smoothing effects of inclusion of dura layer in human head models for EEG simulations , 2014, Front. Neuroeng..

[6]  J. Haueisen,et al.  Magnetoencephalography signals are influenced by skull defects , 2014, Clinical Neurophysiology.

[7]  Solomon G. Diamond,et al.  Algorithm to find high density EEG scalp coordinates and analysis of their correspondence to structural and functional regions of the brain , 2014, Journal of Neuroscience Methods.

[8]  Andreas Galka,et al.  Combining EEG and MEG for the Reconstruction of Epileptic Activity Using a Calibrated Realistic Volume Conductor Model , 2014, PloS one.

[9]  D. Stegeman,et al.  Investigation of tDCS volume conduction effects in a highly realistic head model , 2014, Journal of neural engineering.

[10]  Carlos H. Muravchik,et al.  Analysis of parametric estimation of head tissue conductivities using Electrical Impedance Tomography , 2013, Biomed. Signal Process. Control..

[11]  Ohin Kwon,et al.  Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection , 2013, Comput. Math. Methods Medicine.

[12]  Oliver Speck,et al.  Cortical thickness determination of the human brain using high resolution 3T and 7T MRI data , 2013, NeuroImage.

[13]  B. Murat Eyüboglu,et al.  Practical Realization of Magnetic Resonance Conductivity Tensor Imaging (MRCTI) , 2013, IEEE Transactions on Medical Imaging.

[14]  Abhishek Datta,et al.  Cranial electrotherapy stimulation and transcranial pulsed current stimulation: A computer based high-resolution modeling study , 2013, NeuroImage.

[15]  Lucas C. Parra,et al.  Subject position affects EEG magnitudes , 2013, NeuroImage.

[16]  Richard Bayford,et al.  Bioimpedance imaging: an overview of potential clinical applications. , 2012, The Analyst.

[17]  M. Clerc,et al.  Comparison of Boundary Element and Finite Element Approaches to the EEG Forward Problem , 2012, Biomedizinische Technik. Biomedical engineering.

[18]  B. Lanfer,et al.  Influence of interior cerebrospinal fluid compartments on EEG source analysis , 2012 .

[19]  Thomas R. Knösche,et al.  Influences of skull segmentation inaccuracies on EEG source analysis , 2012, NeuroImage.

[20]  Christoph M. Michel,et al.  Towards the utilization of EEG as a brain imaging tool , 2012, NeuroImage.

[21]  Ad Aertsen,et al.  Variability of fMRI‐response patterns at different spatial observation scales , 2012, Human brain mapping.

[22]  Marc Modat,et al.  A method for rapid production of subject specific finite element meshes for electrical impedance tomography of the human head , 2012, Physiological measurement.

[23]  Stefan Rampp,et al.  MEG-based identification of the epileptogenic zone in occult peri-insular epilepsy , 2012, Seizure.

[24]  Matthew B. Panzer,et al.  Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation , 2012, Annals of Biomedical Engineering.

[25]  Moritz Grosse-Wentrup,et al.  Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI , 2011, Comput. Intell. Neurosci..

[26]  Alexander Opitz,et al.  How the brain tissue shapes the electric field induced by transcranial magnetic stimulation , 2011, NeuroImage.

[27]  Moritz Dannhauer,et al.  Modeling of the human skull in EEG source analysis , 2011, Human brain mapping.

[28]  Wieslaw Lucjan Nowinski,et al.  Three-dimensional reference and stereotactic atlas of human cerebrovasculature from 7Tesla , 2011, NeuroImage.

[29]  Rosalind J. Sadleir,et al.  Transcranial direct current stimulation (tDCS) in a realistic head model , 2010, NeuroImage.

[30]  Jens Haueisen,et al.  Influence of anisotropic electrical conductivity in white matter tissue on the EEG/MEG forward and inverse solution. A high-resolution whole head simulation study , 2010, NeuroImage.

[31]  L. Miller,et al.  Optimal spacing of surface electrode arrays for brain–machine interface applications , 2010, Journal of neural engineering.

[32]  Anders M. Dale,et al.  Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution , 2010, Journal of Computational Neuroscience.

[33]  Karol Miller,et al.  Modelling brain deformations for computer‐integrated neurosurgery , 2010 .

[34]  Gonzalo Alarcón,et al.  Mechanisms involved in the conduction of anterior temporal epileptiform discharges to the scalp , 2009, Clinical Neurophysiology.

[35]  I. Lemahieu,et al.  Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis , 2009, Physics in medicine and biology.

[36]  Ki-Young Jung,et al.  Spatiotemporospectral characteristics of scalp ictal EEG in mesial temporal lobe epilepsy with hippocampal sclerosis , 2009, Brain Research.

[37]  C H Wolters,et al.  Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. , 2009, Applied numerical mathematics : transactions of IMACS.

[38]  Bart Vanrumste,et al.  EEG/MEG Source Imaging: Methods, Challenges, and Open Issues , 2009, Comput. Intell. Neurosci..

[39]  Jens Haueisen,et al.  Similarities Between Simulated Spatial Spectra of Scalp EEG, MEG and Structural MRI , 2009, Brain Topography.

[40]  Steen Moeller,et al.  T 1 weighted brain images at 7 Tesla unbiased for Proton Density, T 2 ⁎ contrast and RF coil receive B 1 sensitivity with simultaneous vessel visualization , 2009, NeuroImage.

[41]  Simon K. Warfield,et al.  EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model , 2009, NeuroImage.

[42]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[43]  Byung Il Lee,et al.  In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system , 2008, Physiological measurement.

[44]  Eung Je Woo,et al.  Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging , 2008, Physiological measurement.

[45]  Bin He,et al.  Noninvasive Imaging of Head-Brain Conductivity Profiles , 2008, IEEE Engineering in Medicine and Biology Magazine.

[46]  Bart Vanrumste,et al.  Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis , 2008, Physics in medicine and biology.

[47]  Katrina Wendel,et al.  The Influence of CSF on EEG Sensitivity Distributions of Multilayered Head Models , 2008, IEEE Transactions on Biomedical Engineering.

[48]  Oliver Kraff,et al.  To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[49]  Carsten H. Wolters,et al.  Geometry-Adapted Hexahedral Meshes Improve Accuracy of Finite-Element-Method-Based EEG Source Analysis , 2007, IEEE Transactions on Biomedical Engineering.

[50]  Stefan Rampp,et al.  Magnetoencephalography in presurgical epilepsy diagnosis , 2007, Expert review of medical devices.

[51]  Jing Li,et al.  Effects of holes on EEG forward solutions using a realistic geometry head model , 2007, Journal of neural engineering.

[52]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[53]  Max A. Viergever,et al.  Vessel enhancing diffusion: A scale space representation of vessel structures , 2006, Medical Image Anal..

[54]  Xavier Tricoche,et al.  Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling , 2006, NeuroImage.

[55]  J. Haueisen,et al.  Influence of head models on EEG simulations and inverse source localizations , 2006, Biomedical engineering online.

[56]  J. Stinstra,et al.  On the Passive Cardiac Conductivity , 2005, Annals of Biomedical Engineering.

[57]  Maxime Sermesant,et al.  Application of soft tissue modelling to image-guided surgery. , 2005, Medical engineering & physics.

[58]  Shibaji Shome,et al.  Modelling passive cardiac conductivity during ischaemia , 2005, Medical and Biological Engineering and Computing.

[59]  Y. D'Asseler,et al.  A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization , 2005 .

[60]  Jan Geelen,et al.  Modelling motor cortex stimulation for chronic pain control: Electrical potential field, activating functions and responses of simple nerve fibre models , 2005, Medical and Biological Engineering and Computing.

[61]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[62]  P. Celsis,et al.  Effects of skull thickness, anisotropy, and inhomogeneity on forward EEG/ERP computations using a spherical three‐dimensional resistor mesh model , 2004, Human brain mapping.

[63]  W. Hackbusch,et al.  Efficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem. Part I: Complexity Considerations , 2003 .

[64]  J. Haueisen,et al.  Role of Soft Bone, CSF and Gray Matter in EEG Simulations , 2003, Brain Topography.

[65]  Carsten H. Wolters,et al.  A parallel algebraic multigrid solver for finite element method based source localization in the human brain , 2002 .

[66]  R. Oostenveld,et al.  Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull , 2002, Human brain mapping.

[67]  Gonzalo Alarcón,et al.  A Hole in the Skull Distorts Substantially the Distribution of Extracranial Electrical Fields in an in Vitro Model , 2002, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[68]  J. Haueisen,et al.  The Influence of Brain Tissue Anisotropy on Human EEG and MEG , 2002, NeuroImage.

[69]  J. Gotman,et al.  Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method , 2002, Clinical Neurophysiology.

[70]  Klaus Stüben,et al.  Parallel algebraic multigrid based on subdomain blocking , 2001, Parallel Comput..

[71]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[72]  B. Steinhoff,et al.  Source Reconstruction of Mesial‐Temporal Epileptiform Activity: Comparison of Inverse Techniques , 2000, Epilepsia.

[73]  I. Lemahieu,et al.  Dipole location errors in electroencephalogram source analysis due to volume conductor model errors , 2000, Medical and Biological Engineering and Computing.

[74]  C D Binnie,et al.  Generation of scalp discharges in temporal lobe epilepsy as suggested by intraoperative electrocorticographic recordings , 1999, Journal of neurology, neurosurgery, and psychiatry.

[75]  C. D Binnie,et al.  Comparison of sphenoidal, foramen ovale and anterior temporal placements for detecting interictal epileptiform discharges in presurgical assessment for temporal lobe epilepsy , 1999, Clinical Neurophysiology.

[76]  F. Mauguière,et al.  Topographical reliability of mesio-temporal sources of interictal spikes in temporal lobe epilepsy. , 1998, Electroencephalography and clinical neurophysiology.

[77]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[78]  J. Bogousslavsky,et al.  Arterial territories of the human brain , 1998, Neurology.

[79]  Ramesh Srinivasan,et al.  Estimating the spatial Nyquist of the human EEG , 1998 .

[80]  J S Ebersole,et al.  Continuous Source Imaging of Scalp Ictal Rhythms in Temporal Lobe Epilepsy , 1997, Epilepsia.

[81]  J. Haueisen,et al.  Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head , 1997, IEEE Transactions on Biomedical Engineering.

[82]  M Wagner,et al.  Inverse localization of electric dipole current sources in finite element models of the human head. , 1997, Electroencephalography and clinical neurophysiology.

[83]  L. Nuno,et al.  Analysis of general lossy inhomogeneous and anisotropic waveguides by the finite-element method (FEM) using edge elements , 1997 .

[84]  A. Sances,et al.  Finite-element models of the human head , 1996, Medical and Biological Engineering and Computing.

[85]  F Mauguière,et al.  Source propagation of interictal spikes in temporal lobe epilepsy. Correlations between spike dipole modelling and [18F]fluorodeoxyglucose PET data. , 1996, Brain : a journal of neurology.

[86]  J. Haueisen,et al.  On the influence of volume currents and extended sources on neuromagnetic fields: A simulation study , 1995, Annals of Biomedical Engineering.

[87]  F. Perrin,et al.  Finite Element method for a realistic head model of electrical brain activities , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[88]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[89]  A. van der Zwan,et al.  Review of the variability of the territories of the major cerebral arteries. , 1991, Stroke.

[90]  N J Abbott,et al.  Electrical resistance across the blood‐brain barrier in anaesthetized rats: a developmental study. , 1990, The Journal of physiology.

[91]  Onno W. Weier,et al.  On the numerical accuracy of the boundary element method (EEG application) , 1989, IEEE Transactions on Biomedical Engineering.

[92]  J. Meijs,et al.  The EEG and MEG, Using a Model of Eccentric Spheres to Describe the Head , 1987, IEEE Transactions on Biomedical Engineering.

[93]  S. Olesen,et al.  Electrical resistance of brain microvascular endothelium , 1982, Brain Research.

[94]  J. P. Ary,et al.  Location of Sources of Evoked Scalp Potentials: Corrections for Skull and Scalp Thicknesses , 1981, IEEE Transactions on Biomedical Engineering.

[95]  Hiroshi Kanai,et al.  Electrical Characteristics of Flowing Blood , 1979, IEEE Transactions on Biomedical Engineering.

[96]  Anthony Sances,et al.  The Contributions of Intracerebral Currents to the EEG and Evoked Potentials , 1978, IEEE Transactions on Biomedical Engineering.

[97]  D. E. Roberts,et al.  The Upper Tail Probabilities of Spearman's Rho , 1975 .

[98]  W. Walter,et al.  COMPARISON OF SUBCORTICAL, CORTICAL AND SCALP ACTIVITY USING CHRONICALLY INDWELLING ELECTRODES IN MAN. , 1965, Electroencephalography and clinical neurophysiology.

[99]  C. D. Geisler,et al.  The surface EEG in relation to its sources , 1961 .

[100]  E. Frank Electric Potential Produced by Two Point Current Sources in a Homogeneous Conducting Sphere , 1952 .

[101]  F. N. Wilson,et al.  The Electric Field of an Eccentric Dipole in a Homogeneous Spherical Conducting Medium , 1950, Circulation.

[102]  G I Boyd,et al.  The Emissary Foramina of the Cranium in Man and the Anthropoids. , 1930, Journal of anatomy.

[103]  C. Ramon Effect of Dura Layer on Scalp EEG Simulations , 2012 .

[104]  J. Schoffelen,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2018 .

[105]  Wolters Carsten,et al.  EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model , 2010 .

[106]  Artur Polinski,et al.  The contribution of blood-flow-induced conductivity changes to measured impedance , 2005, IEEE Transactions on Biomedical Engineering.

[107]  P. Inchingolo,et al.  EEG Simulation Accuracy : Reference Choice and Head Models Extension , 2005 .

[108]  C H Wolters,et al.  Efficient computation of lead field bases and influence matrix for the FEM-based EEG and MEG inverse problem , 2004 .

[109]  C. Wolters Influence of tissue conductivity inhomogeneity and anisotropy on EEG/MEG based source localization in the human brain , 2003 .

[110]  Paolo Inchingolo,et al.  Head model extension for the study of bioelectric phenomena. , 2003, Biomedical sciences instrumentation.

[111]  Matthias Dümpelmann,et al.  Influence of realistic skull and white matter anisotropy on the inverse problem in EEG/MEG-source localization , 2002 .

[112]  K. St A review of algebraic multigrid , 2001 .

[113]  R. Pascual-Marqui Review of methods for solving the EEG inverse problem , 1999 .

[114]  W. Zenker,et al.  Zellen- und Gewebelehre, Entwicklungsbiologie, Bewegungsapparat, Herz-Kreislauf-System, Immunsystem, Atem- und Verdauungsapparat , 1994 .

[115]  B.N. Cuffin,et al.  Effects of local variations in skull and scalp thickness on EEG's and MEG's , 1993, IEEE Transactions on Biomedical Engineering.

[116]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[117]  M R Schneider,et al.  A multistage process for computing virtual dipolar sources of EEG discharges from surface information. , 1972, IEEE transactions on bio-medical engineering.

[118]  M A B BRAZIER,et al.  The electrical fields at the surface of the head during sleep. , 1949, Electroencephalography and clinical neurophysiology.