Controlled dynamic variation of interfacial electronic and optical properties of sodium-intercalated silicene/hBN heterostructure

[1]  Mubashar Ali,et al.  An accurate prediction of electronic structure, mechanical stability and optical response of BaCuF3 fluoroperovskite for solar cell application , 2024, Solar Energy.

[2]  M. Younis,et al.  Controlled dynamic variation of interfacial electronic and optical properties of lithium intercalated ZrO2/MoS2 vdW heterostructure. , 2023, Journal of molecular graphics & modelling.

[3]  Mubashar Ali,et al.  Structural, Optoelectronic and Thermodynamical Insights into 2H-ZrO2: A DFT Investigation , 2023, Inorganic Chemistry Communications.

[4]  Mubashar Ali,et al.  First‐principles investigation of structural, mechanical, and optoelectronic properties of Hf2AX (A═Al, Si and X═C, N) MAX phases , 2023, Journal of the American Ceramic Society.

[5]  M. Younis,et al.  Layer-sliding-mediated reversible tuning of interfacial electronic and optical properties of intercalated ZrO2/MoS2 van der Waals heterostructure , 2023, Journal of Materials Research.

[6]  M. Younis,et al.  CO adsorption on two-dimensional 2H-ZrO2 and its effect on the interfacial electronic properties: implications for sensing , 2023, Physica Scripta.

[7]  Junaid Munir,et al.  Layer-sliding-mediated controllable synthetic strategy for the preparation of multifunctional materials , 2023, Materials Today Communications.

[8]  Junaid Munir,et al.  Achieving controllable multifunctionality through layer sliding. , 2023, Journal of molecular graphics & modelling.

[9]  Mubashar Ali,et al.  Efficient hydrogen storage in LiMgF3: A first principle study , 2023, International Journal of Hydrogen Energy.

[10]  F. Nüesch,et al.  Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions , 2022, Small Science.

[11]  Jong-Hyun Ahn,et al.  2D Materials for Skin‐Mountable Electronic Devices , 2021, Advanced materials.

[12]  Yuerui Lu,et al.  Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives , 2020, Nano Research.

[13]  Carlo Cavazzoni,et al.  Quantum ESPRESSO toward the exascale. , 2020, The Journal of chemical physics.

[14]  A. Van der Ven,et al.  Understanding intercalation compounds for sodium-ion batteries and beyond , 2019, Philosophical Transactions of the Royal Society A.

[15]  P. Gong,et al.  H‐/dT‐MoS2‐on‐MXene Heterostructures as Promising 2D Anode Materials for Lithium‐Ion Batteries: Insights from First Principles , 2019, Advanced Theory and Simulations.

[16]  F. Peeters,et al.  C3N Monolayer: Exploring the Emerging of Novel Electronic and Magnetic Properties with Adatom Adsorption, Functionalizations, Electric Field, Charging, and Strain , 2019, The Journal of Physical Chemistry C.

[17]  Lin Wang,et al.  Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy , 2018, Frontiers of Physics.

[18]  Yang-Kook Sun,et al.  Recent Progress in Rechargeable Potassium Batteries , 2018, Advanced Functional Materials.

[19]  X. Tao,et al.  Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. , 2017, ACS nano.

[20]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[21]  H. Su,et al.  Phosphorene: from theory to applications , 2016 .

[22]  Liang Zhao,et al.  Graphene-Like ZnO: A Mini Review , 2016, Crystals.

[23]  R. Ruoff,et al.  Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries , 2016 .

[24]  A. Singh,et al.  Lifshitz transition and modulation of electronic and transport properties of bilayer graphene by sliding and applied normal compressive strain , 2016 .

[25]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[26]  Fang Song,et al.  Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis , 2014, Nature Communications.

[27]  S. Cheong,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[28]  Liangbing Hu,et al.  Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation , 2014, Nature Communications.

[29]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[30]  Chunsheng Wang,et al.  Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes , 2014 .

[31]  R. Kurchania,et al.  Silicene and Germanene: A First Principle Study of Electronic Structure and Effect of Hydrogenation-Passivation , 2014 .

[32]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[33]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[34]  P. Ajayan,et al.  Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride , 2013, Nature Communications.

[35]  Fei Meng,et al.  Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. , 2013, Journal of the American Chemical Society.

[36]  W. Geng,et al.  Influence of Interface Structure on the Properties of ZnO/Graphene Composites: A Theoretical Study by Density Functional Theory Calculations , 2013 .

[37]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[38]  D. Nezich,et al.  A novel class of strain gauges based on layered percolative films of 2D materials. , 2012, Nano letters.

[39]  Yuewei Zhang,et al.  Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. , 2012, Nanoscale.

[40]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[41]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[42]  Z. Wang,et al.  Nitrogen-doped graphene/ZnSe nanocomposites: hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. , 2012, ACS nano.

[43]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[44]  Jing Kong,et al.  Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. , 2012, Nano letters.

[45]  C. Su,et al.  Electrical probing of submicroliter liquid using graphene strip transistors built on a nanopipette. , 2012, Small.

[46]  Yang Wang,et al.  Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. , 2011, Nano letters.

[47]  P. Avouris,et al.  Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering. , 2010, Nano letters.

[48]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[49]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[50]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[52]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[53]  K. Shepard,et al.  Current saturation in zero-bandgap, top-gated graphene field-effect transistors. , 2008, Nature nanotechnology.

[54]  E. Williams,et al.  Atomic structure of graphene on SiO2. , 2007, Nano letters.

[55]  F. Guinea,et al.  Drawing Conclusions from Graphene , 2006 .

[56]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[57]  Carlo Cavazzoni,et al.  First-principles codes for computational crystallography in the Quantum-ESPRESSO package , 2005 .

[58]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[59]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[60]  G. Kerker,et al.  Non-singular atomic pseudopotentials for solid state applications , 1980 .

[61]  W. Y. Liang,et al.  A study of the optical joint density-of-states function , 1976 .

[62]  S. Clark,et al.  Few-layer graphene under high pressure: Raman and X-ray diffraction studies , 2013 .

[63]  Hiroaki Yoshida,et al.  Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries , 2013 .

[64]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.