The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

We have made the largest volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200 000 blue galaxies in a cosmic volume of ∼1 h^(−3) Gpc^3. A new method of defining the ‘homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z = 1), we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(< r) in spheres of comoving radius r is proportional to r^3 within 1 per cent, or equivalently the fractal dimension of the sample is within 1 per cent of D_2 = 3, at radii larger than 71 ± 8 h^(−1) Mpc at z ∼ 0.2, 70 ± 5 h^(−1) Mpc at z ∼ 0.4, 81 ± 5 h^(−1)  Mpc at z ∼ 0.6 and 75 ± 4 h^(−1) Mpc at z ∼ 0.8. We demonstrate the robustness of our results against selection function effects, using a Λ cold dark matter (ΛCDM) N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the ΛCDM N-body simulation and an analytical ΛCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2 = 2.97 on scales from ∼80 h^(−1) Mpc up to the largest scales probed by our measurement, ∼300 h^(−1) Mpc, at 99.99 per cent confidence.

[1]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[2]  A. Heavens,et al.  Testing homogeneity with the fossil record of galaxies , 2011, 1107.5910.

[3]  M. Bruni,et al.  Redshift and distances in a ΛCDM cosmology with non-linear inhomogeneities , 2011, 1107.4433.

[4]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[5]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[6]  S. Räsänen Backreaction: directions of progress , 2011 .

[7]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[8]  R. Nichol,et al.  THE EFFECT OF PECULIAR VELOCITIES ON SUPERNOVA COSMOLOGY , 2010, 1012.2912.

[9]  Matthew Colless,et al.  The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum , 2010, 1003.5721.

[10]  Nishikanta Khandai,et al.  Fractal dimension as a measure of the scale of homogeneity , 2010, 1001.0617.

[11]  A. Shafieloo,et al.  Model independent tests of the standard cosmological model , 2009, 0911.4858.

[12]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[13]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[14]  D. Wiltshire Average observational quantities in the timescape cosmology , 2009, 0909.0749.

[15]  Y. Baryshev,et al.  Breaking the self-averaging properties of spatial galaxy fluctuations in the Sloan Digital Sky Survey – Data release six , 2009, 0909.0132.

[16]  J. Yadav,et al.  The scale of homogeneity of the galaxy distribution in SDSS DR6 , 2009, 0906.3431.

[17]  S. Brough,et al.  The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies at z < 1 , 2009, 0901.2587.

[18]  K. Land,et al.  Living in a void: testing the Copernican principle with distant supernovae. , 2008, Physical review letters.

[19]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[20]  T. R. Seshadri,et al.  Fractal dimensions of a weakly clustered distribution and the scale of homogeneity , 2007, 0712.2905.

[21]  G. Robbers,et al.  Cosmological backreaction from perturbations , 2007, 0710.4964.

[22]  D. Wiltshire Exact solution to the averaging problem in cosmology. , 2007, Physical review letters.

[23]  T. Buchert Dark Energy from structure: a status report , 2007, 0707.2153.

[24]  D. Wiltshire Cosmic clocks, cosmic variance and cosmic averages , 2007, gr-qc/0702082.

[25]  D. Schwarz,et al.  Onset of cosmological backreaction , 2007, gr-qc/0702043.

[26]  N. Tetradis,et al.  The effect of large scale inhomogeneities on the luminosity distance , 2006, astro-ph/0612179.

[27]  S. Rasanen Accelerated expansion from structure formation , 2006, astro-ph/0607626.

[28]  G. Ellis,et al.  The universe seen at different scales , 2005, gr-qc/0506106.

[29]  India.,et al.  Testing homogeneity on large scales in the Sloan Digital Sky Survey Data Release One , 2005, Monthly Notices of the Royal Astronomical Society.

[30]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[31]  Neta A. Bahcall,et al.  Cosmic Homogeneity Demonstrated with Luminous Red Galaxies , 2004, astro-ph/0411197.

[32]  S. Matarrese,et al.  Effect of inhomogeneities on the expansion rate of the universe , 2004, Physical Review D.

[33]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[34]  I. Hook,et al.  A high abundance of massive galaxies 3–6 billion years after the Big Bang , 2004, Nature.

[35]  N. Afshordi Integrated Sachs-Wolfe effect in cross-correlation: The observer's manual , 2004, astro-ph/0401166.

[36]  J. Brinkmann,et al.  A Map of the Universe , 2003, astro-ph/0310571.

[37]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[38]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[39]  Jean-Luc Starck,et al.  Astronomical Data Analysis II , 2002 .

[40]  D. Schwarz Accelerated expansion without dark energy , 2002, astro-ph/0209584.

[41]  Vicent J. Martinez,et al.  Clustering statistics in cosmology , 2002, SPIE Astronomical Telescopes + Instrumentation.

[42]  C. Blake,et al.  Detection of the velocity dipole in the radio galaxies of the NRAO VLA Sky Survey , 2002, astro-ph/0203385.

[43]  Chris Blake,et al.  A velocity dipole in the distribution of radio galaxies , 2002, Nature.

[44]  P. Coles,et al.  Boundary corrections in fractal analysis of galaxy surveys , 2001, astro-ph/0111234.

[45]  A. Gabrielli,et al.  Glass-like universe: Real-space correlation properties of standard cosmological models , 2001, astro-ph/0110451.

[46]  Masahiro Morikawa,et al.  Scaling analysis of galaxy distribution in the Las Campanas Redshift Survey data , 2001 .

[47]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[48]  P. Coles,et al.  Large‐scale cosmic homogeneity from a multifractal analysis of the PSCz catalogue , 2000, astro-ph/0008240.

[49]  M. Montuori,et al.  Fractal cosmology in an open universe , 2000, astro-ph/0002504.

[50]  Cambridge,et al.  The 2-10 keV X-Ray Background Dipole and Its Cosmological Implications , 1999, astro-ph/9908187.

[51]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[52]  T. Buchert On Average Properties of Inhomogeneous Fluids in General Relativity: Dust Cosmologies , 1999, gr-qc/9906015.

[53]  L. Amendola,et al.  The Scale of Homogeneity in the Las Campanas Redshift Survey , 1999, astro-ph/9901420.

[54]  M. Montuori,et al.  Fractal Correlations in the CfA2-South Redshift Survey , 1999, astro-ph/9901290.

[55]  O. Lahav,et al.  The large-scale smoothness of the Universe , 1998, Nature.

[56]  M. Graham,et al.  Searching for the scale of homogeneity , 1998, astro-ph/9804073.

[57]  M. Montuori,et al.  Scale-invariance of galaxy clustering , 1997, astro-ph/9711073.

[58]  S. Cole,et al.  Modelling the redshift-space distortion of galaxy clustering , 1997, astro-ph/9707186.

[59]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[60]  L. Guzzo,et al.  Is the universe homogeneous? (On large scales) , 1997, astro-ph/9711206.

[61]  N. Turok Critical Dialogues in Cosmology , 1997 .

[62]  M. Montuori,et al.  On the Fractal Structure of the Visible Universe , 1996, astro-ph/9611197.

[63]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[64]  E. L. Wright,et al.  The Cosmic Microwave Background Spectrum from the Full COBE FIRAS Data Set , 1996, astro-ph/9605054.

[65]  K. Fisher On the validity of the streaming model for the redshift space correlation function in the linear regime , 1994, astro-ph/9412081.

[66]  S. Borgani Scaling in the Universe , 1994, astro-ph/9404054.

[67]  P. Coles,et al.  Correlations and Scaling in the QDOT Redshift Survey , 1994 .

[68]  L. Guzzo,et al.  Clustering properties from finite galaxy samples , 1994 .

[69]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[70]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[71]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[72]  P. Coles Galaxy formation with a local bias , 1993 .

[73]  P. Peebles Principles of Physical Cosmology , 1993 .

[74]  Luciano Pietronero,et al.  The fractal structure of the universe , 1992 .

[75]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[76]  G. Lemson,et al.  On the use of the conditional density as a description of galaxy clustering , 1991 .

[77]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[78]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[79]  J. Huchra,et al.  Mapping the Universe , 1989, Science.

[80]  J. Huchra,et al.  The Luminosity Function for the CfA Redshift Survey Slices , 1989 .

[81]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[82]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[83]  B. Ripley Modelling Spatial Patterns , 1977 .

[84]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .