Effect of Front TCO Layer on Properties of Substrate-Type Thin-Film Microcrystalline Silicon Solar Cells
暂无分享,去创建一个
Yoshiaki Takeuchi | Takashi Koida | Michio Kondo | Isao Yoshida | Hirotaka Katayama | Takuya Matsui | Y. Takeuchi | M. Kondo | K. Matsubara | H. Sai | T. Koida | T. Matsui | K. Maejima | H. Katayama | I. Yoshida | Koji Matsubara | S. Sugiyama | Hitoshi Sai | Keigo Maejima | Shuichiro Sugiyama
[1] C. Ballif,et al. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .
[2] Y. Takeuchi,et al. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6% , 2015 .
[3] Valery Shklover,et al. Towards high-efficiency thin-film silicon solar cells with the “micromorph” concept , 1997 .
[4] B. Rech,et al. Thickness dependence of microcrystalline silicon solar cell properties , 2001 .
[5] Christophe Ballif,et al. TCOs for nip thin film silicon solar cells , 2009 .
[6] Christophe Ballif,et al. High‐efficiency microcrystalline silicon single‐junction solar cells , 2013 .
[7] M. Kondo,et al. 11.0%-Efficient Thin-Film Microcrystalline Silicon Solar Cells With Honeycomb Textured Substrates , 2014, IEEE Journal of Photovoltaics.
[8] M. Kondo,et al. Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays , 2012 .
[9] Shigeru Niki,et al. Highly Efficient Cu(In,Ga)Se2 Thin-Film Submodule Fabricated Using a Three-Stage Process , 2013 .
[10] G. Martinelli,et al. Contact grid optimization methodology for front contact concentration solar cells , 2003 .
[11] Nobuto Oka,et al. Carrier Density Dependence of Optical Band Gap and Work Function in Sn-Doped In2O3 Films , 2010 .
[12] Tadatsugu Minami,et al. Transparent and conductive multicomponent oxide films prepared by magnetron sputtering , 1999 .
[13] S. Guha,et al. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .
[14] Olindo Isabella,et al. Light management in thin-film silicon solar cells , 2013 .
[15] M. Kondo,et al. Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures , 2015 .
[16] Soo-Hyun Kim,et al. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .
[17] C. Ballif,et al. Improvement of the open circuit voltage by modifying the transparent indium–tin oxide front electrode in amorphous n–i–p solar cells , 2012 .
[18] D. Staebler,et al. Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .
[19] Y. Takeuchi,et al. High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition , 2015 .
[20] M. Zeman,et al. Influence of ITO deposition and post annealing on HIT solar cell structures , 2011 .
[21] M. Kondo,et al. Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .
[22] M. Kondo,et al. Influences of deposition temperature on characteristics of B-doped ZnO films deposited by metal–organic chemical vapor deposition , 2014 .
[23] K. Yamamoto. Very thin film crystalline silicon solar cells on glass substrate fabricated at low temperature , 1999 .
[24] Reinhard Carius,et al. Microcrystalline silicon solar cells deposited at high rates , 2005 .
[25] W. W. Wenas,et al. Textured ZnO Thin Films for Solar Cells Grown by Metalorganic Chemical Vapor Deposition , 1991 .