Effect of Front TCO Layer on Properties of Substrate-Type Thin-Film Microcrystalline Silicon Solar Cells

Power conversion efficiency of thin-film microcrystalline silicon solar cells has been remarkably improved recently: from 10.1% to 11.8%. Front transparent conductive oxide (TCO) films have played an important role in this efficiency improvement. In this study, the impact of the front TCO films was investigated by comparing microcrystalline silicon solar cells with In2O3:Sn films grown by sputtering and ZnO:B films grown by metal-organic chemical vapor deposition (MOCVD). Improvement mechanisms in open-circuit voltages and fill factors in solar cells are investigated and discussed.

[1]  C. Ballif,et al.  Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .

[2]  Y. Takeuchi,et al.  Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6% , 2015 .

[3]  Valery Shklover,et al.  Towards high-efficiency thin-film silicon solar cells with the “micromorph” concept , 1997 .

[4]  B. Rech,et al.  Thickness dependence of microcrystalline silicon solar cell properties , 2001 .

[5]  Christophe Ballif,et al.  TCOs for nip thin film silicon solar cells , 2009 .

[6]  Christophe Ballif,et al.  High‐efficiency microcrystalline silicon single‐junction solar cells , 2013 .

[7]  M. Kondo,et al.  11.0%-Efficient Thin-Film Microcrystalline Silicon Solar Cells With Honeycomb Textured Substrates , 2014, IEEE Journal of Photovoltaics.

[8]  M. Kondo,et al.  Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays , 2012 .

[9]  Shigeru Niki,et al.  Highly Efficient Cu(In,Ga)Se2 Thin-Film Submodule Fabricated Using a Three-Stage Process , 2013 .

[10]  G. Martinelli,et al.  Contact grid optimization methodology for front contact concentration solar cells , 2003 .

[11]  Nobuto Oka,et al.  Carrier Density Dependence of Optical Band Gap and Work Function in Sn-Doped In2O3 Films , 2010 .

[12]  Tadatsugu Minami,et al.  Transparent and conductive multicomponent oxide films prepared by magnetron sputtering , 1999 .

[13]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[14]  Olindo Isabella,et al.  Light management in thin-film silicon solar cells , 2013 .

[15]  M. Kondo,et al.  Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures , 2015 .

[16]  Soo-Hyun Kim,et al.  Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .

[17]  C. Ballif,et al.  Improvement of the open circuit voltage by modifying the transparent indium–tin oxide front electrode in amorphous n–i–p solar cells , 2012 .

[18]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[19]  Y. Takeuchi,et al.  High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition , 2015 .

[20]  M. Zeman,et al.  Influence of ITO deposition and post annealing on HIT solar cell structures , 2011 .

[21]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[22]  M. Kondo,et al.  Influences of deposition temperature on characteristics of B-doped ZnO films deposited by metal–organic chemical vapor deposition , 2014 .

[23]  K. Yamamoto Very thin film crystalline silicon solar cells on glass substrate fabricated at low temperature , 1999 .

[24]  Reinhard Carius,et al.  Microcrystalline silicon solar cells deposited at high rates , 2005 .

[25]  W. W. Wenas,et al.  Textured ZnO Thin Films for Solar Cells Grown by Metalorganic Chemical Vapor Deposition , 1991 .